首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 549 毫秒
1.
In a previous series of papers, a semi-analytical model based on Hamilton's principle and spectral analysis has been developed for geometrically non-linear free vibrations occurring at large displacement amplitudes of clamped-clamped beams and fully clamped rectangular homogeneous and composite plates. In Part I of this series of papers, concerned with geometrically non-linear free and forced vibrations of various beams, a practical simple “multi-mode theory”, based on the linearization of the non-linear algebraic equations, written in the modal basis, in the neighbourhood of each resonance has been developed. Simple explicit formulae, ready and easy to use for analytical or engineering purposes have been derived, which allows direct calculation of the basic function contributions to the first three non-linear mode shapes of the beams considered. Also, various possible truncations of the series expansion defining the first non-linear mode shape have been considered and compared with the complete solution, which showed that an increasing number of basic functions has to be used, corresponding to increasingly sized intervals of vibration amplitudes; starting from use of only one function, i.e., the first linear mode shape, corresponding to very small amplitudes, for which the linear theory is still valid, and ending by the complete series, involving six functions, corresponding to maximum vibration amplitudes at the beam middle point up to once the beam thickness. For higher amplitudes, a complementary second formulation has been developed, leading to reproduction of the known results via the solution of reduced linear systems of five equations and five unknowns. The purpose of this paper is to extend and adapt the approach described above to the geometrically non-linear free vibration of fully clamped rectangular plates in order to allow direct and easy calculation of the first, second and higher non-linear fully clamped rectangular plate mode shapes, with their associated non-linear frequencies and non-linear bending stress patterns. Also, numerical results corresponding to the first and second non-linear modes shapes of fully clamped rectangular plates with an aspect ratio α=0·6 are presented. Data concerning the higher non-linear modes, the aspect ratio effect, and the forced vibration case will be presented later.  相似文献   

2.
The semi-analytical approach to the non-linear dynamic response of beams based on multimode analysis has been presented in Part I of this series of papers (Azrar et al., 1999 Journal of Sound and Vibration224, 183-207 [1]). The mathematical formulation of the problem and single mode analysis have been studied. The objective of this paper is to take advantage of applying this semi-analytical approach to the large amplitude forced vibrations of beams. Various types of excitation forces such as harmonic distributed and concentrated loads are considered. The governing equation of motion is obtained and can be considered as a multi-dimensional form of the Duffing equation. Using the harmonic balance method, the equation of motion is converted into non-linear algebraic form. Techniques of solution based on iterative-incremental procedures are presented. The non-linear frequency and the non-linear modes are determined at large amplitudes of vibration. The basic function contribution coefficients to the displacement response for various beam boundary conditions are calculated. The percentage of participation for each mode in the response is presented in order to appraise the relation to higher modes contributing to the solution. Also, the percentage contributions of the higher modes to the bending moment near to the clamps are given, in order to determine accurately the error introduced in the non-linear bending stress estimated by different approximations. Solutions obtained in the jump phenomena region have been determined by a careful selection of the initial iteration at each frequency. The non-linear deflection shapes in various regions of the solution, the corresponding axial force ratios and the bending moments are presented in order to follow the behaviour of the beam at large vibration amplitudes. The numerical results obtained here for the non-linear forced response are compared with those from the linear theory, with available non-linear results, based on various approaches, and with the single mode analysis.  相似文献   

3.
The effects of large vibration amplitudes on the first two axisymmetric mode shapes of clamped thin isotropic circular plates are examined. The theoretical model based on Hamilton's principle and spectral analysis developed previously by Benamar et al. for clamped-clamped beams and fully clamped rectangular plates is adapted to the case of circular plates using a basis of Bessel's functions. The model effectively reduces the large-amplitude free vibration problem to the solution of a set of non-linear algebraic equations. Numerical results are given for the first and second axisymmetric non-linear mode shapes for a wide range of vibration amplitudes. For each value of the vibration amplitude considered, the corresponding contributions of the basic functions defining the non-linear transverse displacement function and the associated non-linear frequency are given. The non-linear frequencies associated to the fundamental non-linear mode shape predicted by the present model were compared with numerical results from the available published literature and a good agreement was found. The non-linear mode shapes exhibit higher bending stresses near to the clamped edge at large deflections, compared with those predicted by linear theory. In order to obtain explicit analytical solutions for the first two non-linear axisymmetric mode shapes of clamped circular plates, which are expected to be very useful in engineering applications and in further analytical developments, the improved version of the semi-analytical model developed by El Kadiri et al. for beams and rectangular plates, has been adapted to the case of clamped circular plates, leading to explicit expressions for the higher basic function contributions, which are shown to be in a good agreement with the iterative solutions, for maximum non-dimensional vibration amplitude values of 0.5 and 0.44 for the first and second axisymmetric non-linear mode shapes, respectively.  相似文献   

4.
The forced and free dynamic response of plates with cut-outs formulated in Part I [1] is used to investigate the effect of cut-outs on the natural frequencies of clamped-clamped plates. The size, shape and location of the cut-out is expressed as a displacement dependent external loading. The plates considered are homogeneous and anisotropic. Lagrange's equations of motion lead to an infinite system of differential equations in time-dependent generalized co-ordinates with generalized forces which include the effects of the cut-outs. There is an infinite system of frequency equations for free vibrations. The infinite system is truncated to a finite system of equations depending upon the accuracy desired in frequency values. Results are given for square, clamped-clamped plates with centrally located square cut-outs for different modulus ratios. Good agreement is obtained when results for isotropic plates with cut-outs are compared with available theoretical and experimental results.  相似文献   

5.
In a previous series of papers (Benamar 1990 Ph.D. Thesis, University of Southampton; Benamaret al. 1991 Journal of Sound and Vibration149, 179-195;164, 399-424 [1-3]) a general model based on Hamilton's principle and spectral analysis has been developed for non-linear free vibrations occurring at large displacement amplitudes of fully clamped beams and rectangular homogeneous and composite plates. The results obtained with this model corresponding to the first non-linear mode shape of a clamped-clamped (CC) beam and to the first non-linear mode shape of a CC plate are in good agreement with those obtained in previous experimental studies (Benamaret al. 1991 Journal of Sound and Vibration 149, 179-195;164, 399-424 [2, 3]). More recently, this model has been re-derived (Azar et al. 1999 Journal of Sound and Vibration224, 377-395; submitted [4, 5]) using spectral analysis, Lagrange's equations and the harmonic balance method, and applied to obtain the non-linear steady state forced periodic response of simply supported (SS), CC, and simply supported-clamped (SSC) beams. The practical application of this approach to engineering problems necessitates the use of appropriate software in each case or use of published tables of data, obtained from numerical solution of the non-linear algebraic system, corresponding to each problem. The present work was an attempt to develop a more practical simple “multi-mode theory” based on the linearization of the non-linear algebraic equations, written on the modal basis, in the neighbourhood of each resonance. The purpose was to derive simple formulae, which are easy to use, for engineering purposes. In this paper, two models are proposed. The first is concerned with displacement amplitudes of vibrationWmax /H, obtained at the beam centre, up to about 0·7 times the beam thickness and the second may be used for higher amplitudes Wmax/H up to about 1·5 times the beam thickness. This new approach has been successfully used in the free vibration case to the first, second and third non-linear modes shapes of CC beams and to the first non-linear mode shape of a CSS beam. It has also been applied to obtain the non-linear steady state periodic forced response of CC and CSS beams, excited harmonically with concentrated and distributed forces.  相似文献   

6.
Forced, damped, non-linear, low-frequency flexural motions of a clamped-clamped sandwich beam with thin face sheets and a soft viscoelastic core are examined experimentally and theoretically. The theory employed neglects the extensional rigidity of the core and treats the face sheets as membranes. The non-linearity stems from axial stretching of the face sheets. Damping is taken into account by modeling the core as a Kelvin solid, with the material parameters used being obtained experimentally as functions of frequency and temperature. Theoretical frequency-amplitude relations are obtained using Galerkin's procedure and the method of harmonic balance. Results on fundamental natural frequencies, mode shapes, and stability are also presented. In the experiment, mechanical contact with the specimen was avoided by employing electromagnetic forcing and using a proximeter to measure displacements. Also, special attention was given to the interface bonds and to the reproduction, as close as possible, of clamped-clamped conditions. Agreement between the theoretical and experimental results is, in general, quite good.  相似文献   

7.
Experimental results are presented for large amplitude, forced motion of damped, three-layer beams. The beams are constructed with a viscoelastic material constrained between stiff, elastic, outer layers. The sandwich beam is axially restrained; therefore large amplitude displacements cause non-linear response. When the beam is forced at one-half of the lateral vibration resonant frequency, superharmonic response occurs. The experiment is briefly described and frequency response characteristics, spatial shapes and a measure of superharmonic response are presented. The results are compared with predictions from a previously developed theory.  相似文献   

8.
Volterra series provides a platform for non-linear response representation and definition of higher order frequency response functions (FRFs). It has been extensively used in non-parametric system identification through measurement of first and higher order FRFs. A parametric system identification approach has been adopted in the present study. The series response structure is explored for parameter estimation of polynomial form non-linearity. First and higher order frequency response functions are extracted from the measured response harmonic amplitudes through recursive iteration. Relationships between higher order FRFs and first order FRF are then employed to estimate the non-linear parameters. Excitation levels are selected for minimum series approximation error and the number of terms in the series is controlled according to convergence requirement. The problem of low signal strength of higher harmonics is investigated and a measurability criterion is proposed for selection of excitation level and range of excitation frequency. The procedure is illustrated through numerical simulation for a Duffing oscillator. Robustness of the estimation procedure in the presence of measurement noise is also investigated.  相似文献   

9.
The effects of large vibration amplitudes on the dynamic strain response, near to the fundamental resonance, of a clamped-clamped, thin beam is examined. Complementary theoretical and experimental studies showed that the harmonic distortion of the induced total strain, due to sinusoidal excitation at mid-span, is mainly due to the axial strain component. A limited set of fatigue experiments showed the considerable decrease in fatigue life, which occurs due to non-linear vibration, compared to that of a cantilevered beam of the same material. The statistical approach to the analysis of non-linear vibration induced by random loading is examined theoretically and experimentally, good correlation being achieved between predicted and measured fatigue lives.  相似文献   

10.
The non-linear dynamic behaviour of infinitely long circular cylindrical shells in the case of plane strains is examined and results are compared with previous studies. A theoretical model based on Hamilton's principle and spectral analysis previously developed for non-linear vibration of thin straight structures (beams and plates) is extended here to shell-type structures, reducing the large-amplitude free vibration problem to the solution of a set of non-linear algebraic equations. In the present work, the transverse displacement is assumed to be harmonic and is expanded in the form of a finite series of functions corresponding to the constrained vibrations, which exclude the axisymmetric displacements. The non-linear strain energy is expressed by taking into account the non-linear terms due to the considerable stretching of the shell middle surface induced by large deflections. It has been shown that the model presented here gives new results for infinitely long circular cylindrical shells and can lead to a good approximation for determining the fundamental longitudinal mode shape and the associated higher circumferencial mode shapes (n>3) of simply supported circular cylindrical shells of finite length. The non-linear results at small vibration amplitudes are compared with linear experimental and theoretical results obtained by several authors for simply supported shells. Numerical results (non-linear frequencies, vibration amplitudes and basic function contributions) of infinite shells associated to the first four mode shapes of free vibrations, are obtained, using a multi-mode approach and are summarized in tables. Good agreement is found with results from previous studies for both small and large amplitudes of vibration. The non-linear mode shapes are plotted and discussed for different thickness to radius ratios. The distributions of the bending stresses associated with the mode shapes are given and compared with those obtained via the linear theory.  相似文献   

11.
The non-linear vibration of a clamped-clamped beam at large displacement amplitudes is examined in this work. Complementary theoretical and experimental studies have been carried out to examine the amplitude dependence of the fundamental mode shape and its derivatives and the spatially-dependent harmonic distortion of the transverse displacement which occurs at large deflections.  相似文献   

12.
The geometrically non-linear free vibration of thin composite laminated plates is investigated by using a theoretical model based on Hamilton's principle and spectral analysis previously applied to obtain the non-linear mode shapes and resonance frequencies of thin straight structures, such as beams, plates and shells (Benamar et al. 1991Journal of Sound and Vibration149 , 179-195; 1993, 164, 295-316; 1990 Proceedings of the Fourth International Conference on Recent Advances in Structural Dynamics, Southampton; Moussaoui et al. 2000 Journal of Sound and Vibration232, 917-943 [1-4]). The von Kármán non-linear strain-displacement relationships have been employed. In the formulation, the transverse displacement W of the plate mid-plane has been taken into account and the in-plane displacements U and V have been neglected in the non-linear strain energy expressions. This assumption, quite often made in the literature has been adopted in reference [2] and (El Kadiri et al. 1999 Journal of Sound and Vibration228, 333-358 [5]), in the isotropic case and has been mentioned here because the results obtained have been found to be in very good agreement with those based on the hierarchical finite element method (HFEM). In a previous study, it was assumed, based on the analogy with the isotropic case, that the fundamental carbon fibre reinforced plastic (CFRP) plate non-linear mode shape could be well estimated, by using nine plate functions, obtained as products of clamped-clamped beam functions in the x and y directions, symmetric in both the length U001and width directions [3]. In the present work, a convergence study has been performed and has shown that, although such an assumption may yield a good estimate for the non-linear resonance frequency, 18 plate functions should be taken into account instead of nine in the first non-linear mode shape and associated bending stress patterns calculations. This allows the anisotropy induced by the fibre orientations to be taken into account. Results are given for the fundamental mode of fully clamped CFRP rectangular plates, for various plate aspect ratios and vibration amplitudes. The non-linear mode shows a higher bending stress near the clamps at large deflection, compared with that predicted by linear theory. Some experimental measurements are presented which are in good qualitative agreement with the theory.  相似文献   

13.
This paper presents the use of a scanning laser vibrometer and a signal decomposition method to characterize non-linear dynamics of highly flexible structures. A Polytec PI PSV-200 scanning laser vibrometer is used to measure transverse velocities of points on a structure subjected to a harmonic excitation. Velocity profiles at different times are constructed using the measured velocities, and then each velocity profile is decomposed using the first four linear mode shapes and a least-squares curve-fitting method. From the variations of the obtained modal velocities with time we search for possible non-linear phenomena. A cantilevered titanium alloy beam subjected to harmonic base-excitations around the second, third, and fourth natural frequencies are examined in detail. Influences of the fixture mass, gravity, mass centers of mode shapes, and non-linearities are evaluated. Geometrically exact equations governing the planar, harmonic large-amplitude vibrations of beams are solved for operational deflection shapes using the multiple shooting method. Experimental results show the existence of 1:3 and 1:2:3 external and internal resonances, energy transfer from high-frequency modes to the first mode, and amplitude- and phase-modulation among several modes. Moreover, the existence of non-linear normal modes is found to be questionable.  相似文献   

14.
Large-amplitude (geometrically non-linear) vibrations of circular cylindrical shells subjected to radial harmonic excitation in the spectral neighbourhood of the lowest resonances are investigated. The Lagrange equations of motion are obtained by an energy approach, retaining damping through Rayleigh's dissipation function. Four different non-linear thin shell theories, namely Donnell's, Sanders-Koiter, Flügge-Lur’e-Byrne and Novozhilov's theories, which neglect rotary inertia and shear deformation, are used to calculate the elastic strain energy. The formulation is also valid for orthotropic and symmetric cross-ply laminated composite shells. The large-amplitude response of perfect and imperfect, simply supported circular cylindrical shells to harmonic excitation in the spectral neighbourhood of the lowest natural frequency is computed for all these shell theories. Numerical responses obtained by using these four non-linear shell theories are also compared to results obtained by using the Donnell's non-linear shallow-shell equation of motion. A validation of calculations by comparison with experimental results is also performed. Both empty and fluid-filled shells are investigated by using a potential fluid model. The effects of radial pressure and axial load are also studied. Boundary conditions for simply supported shells are exactly satisfied. Different expansions involving from 14 to 48 generalized co-ordinates, associated with natural modes of simply supported shells, are used. The non-linear equations of motion are studied by using a code based on an arclength continuation method allowing bifurcation analysis.  相似文献   

15.
The paper presents the theoretical basis for an analogue method whereby the random response of a structure may be inferred from measurements of its harmonic response when the excitations are replaced by discrete frequency forces or imposed motions. In the elementary case of a single random input, the method takes a particularly simple form. In the general multi-input case it is shown that the method may be used directly only when all the inputs are fully coherent. Otherwise a superposition technique involving multiple applications of sets of harmonic excitations is required. It is considered that the method may be of practical use as a tool in vibration testing and that, in addition, the underlying analysis contains results of considerable interest on the structure of multi-dimensional stationary random processes.  相似文献   

16.
The inclusion of simple damping of viscous type in the incremental variational equation governing the non-linear motions of multilayer beams is described. Various problems of forced non-linear response of three-layer sandwich beams are studied. Plots of the response curves reveal some complicated and interesting variation of the amplitudes of different harmonic terms, especially in the case of an unsymmetrically layered beam in which a quadratic type of non-linearity is observed.  相似文献   

17.
An incremental variational equation for non-linear motions of multilayer beams composed of n stiff layers and (n ? 1) soft cores is derived from the dynamic virtual work equation by an appropriate integration procedure. The kinematical hypotheses of Euler-Bernoulli and Timoshenko beam theories are used to describe the displacement fields of the stiff layers and cores respectively. An efficient solution procedure of incremental harmonic balance method type, with use of finite elements, is developed. To demonstrate its capability, some problems in free non-linear vibrations of multilayer beams are treated by using the procedure. Results are compared with those available in the literature. The effects of damping are also included in this investigation but are described in Part II [1] of this paper in which a number of undamped and damped forced non-linear vibration problems are studied. Results in the form of tables and plots are also presented and comparisons are made with those available in the literature.  相似文献   

18.
An electro-magnetic controllable dry friction damper has been designed and numerically simulated. The gust response of a three degree-of-freedom typical airfoil section with a control surface using this non-linear damper has been studied theoretically. The effects of the different gust excitations and parameter variations of the non-linear damper on the non-linear aeroelastic response are discussed. The numerical results show the present electro-magnetic dry friction damper can be used to alleviate the dynamic response to both a periodic and a linear frequency sweep gust excitation, especially for the plunge and pitch responses. The results are also verified by an experimental investigation in a wind tunnel presented in a companion paper, Part 2.  相似文献   

19.
An analytical study for free vibration of naturally curved and twisted beams with uniform cross-sectional shapes is carried out using spatial curved beam theory based on the Washizu's static model. In the governing equations of motion of the beams, all displacement functions and the generalized warping coordinate are defined at the centroid axis and also the effects of rotary inertia, transverse shear deformations and torsion-related warping are included in the proposed model. Explicit analytical expressions are derived for the vibrating mode shapes of a curved, bending-torsional-shearing coupled beam under clamped-clamped boundary condition with the help of symbolic computing package Mathematica, and a process of searching is used to determine the natural frequencies. Comparisons of the present results with the FEM results using beam elements in ANSYS code show good accuracy in computation and validity of the model. Further, the present model is used for cylindrical helical springs with circular cross-section fixed at both ends, and the results indicate that the natural frequencies agree well with the theoretical and experimental results available.  相似文献   

20.
Non-linear dynamic systems respond at frequencies other than the excitation frequency; however, standard frequency response function estimators for linear systems do not accommodate this harmonic distortion. A new multi-harmonic frequency response function estimator that utilizes discrete frequency models for non-linear systems is introduced here. The multi-harmonic estimator relates the frequency response at each frequency to the input and output spectra within a given frequency band in the same way that autoregressive exogenous input models relate inputs and outputs at particular samples in the time domain. Overdetermined, least-mean-squares calculations are used to minimize model error throughout a frequency band rather than at a single frequency as in the corresponding linear estimators. The resulting multi-harmonic frequency response function models are non-parametric (e.g., vary with amplitude) when linear functions are used and parametric when non-linear functions are used. A new sensitive indicator for experimentally characterizing non-linearity is introduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号