首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
王益军  严诚 《物理学报》2015,64(19):197304-197304
本文运用密度泛函理论和金属电子论, 深入研究了碳纳米管场致发射电流的变化规律. 结果显示其发射电流密度取决于体系的态密度、赝能隙、管长和局域电场, 在不同范围电场下的变化规律不同. 在较低电场下, 发射电流密度随电场增强而近似线性增大(对应的宏观电场须小于18 V· μm-1); 但在较高电场下, 发射电流密度随外电场增加呈现非周期性振荡增长趋势, 碳纳米管表现为电离发射. 本文进一步研究了金属性碳纳米管电导率在不同电场下的变化规律.  相似文献   

2.
The temperature dependence of electric conductivity and current-voltage characteristics were studied in CuO single crystals with Cu films deposited onto natural faces by thermal evaporation in vacuum or by electrolysis. After electric (resistive) or thermal annealing of the samples, the conductivity of Cu films in this system significantly increases (by a factor of up to 1.5×105 and above) as compared to that of the control Cu films on a glass-ceramic substrate. The effect is attributed to an interfacial layer formed between CuO and Cu, the high conductivity mechanism in which is unclear. It is suggested that the giant electric conductivity and its HTSC-like temperature dependence, as well as nonlinear current–voltage characteristics of the samples can be due to the formation of superconducting regions with the critical temperatures significantly higher than 400 K.  相似文献   

3.
We have carried out electrical conductivity studies on a single-walled carbon nanotubes dispersed lyotropic liquid crystal consisting of 50 wt.% TX-100 in water as a function of magnetic field and temperature. This system exhibits hexagonal and isotropic phases on heating. For all the applied magnetic fields, the temperature dependence of electrical conductivity of the carbon nanotubes dispersed lyotropic liquid crystal system exhibits a discontinuous change at the hexagonal to isotropic transition temperature. We find that the magnetic field dependence of the hexagonal to isotropic transition temperature is similar to that of the viscosity of the system. Using photo images of the sample, we find that the carbon nanotubes in the lyotropic liquid crystal form magnetic field dependent aggregates. We find spherical, rod and hook-like nanotube aggregates for low and high applied magnetic fields respectively. These nanotube aggregates alter the viscosity of our system which in turn alters the transition temperatures.  相似文献   

4.
We investigate theoretically the feasibility of amplification of terahertz radiation in aligned achiral carbon nanotubes, a zigzag (12,0) and an armchair (10,10) in comparison with a superlattice using a combination of a constant direct current (dc) and a high-frequency alternate current (ac) electric fields. The electric current density expression is derived using the semiclassical Boltzmann transport equation with a constant relaxation time. The electric field is applied along the nanotube axis. Analysis of the current density versus electric field characteristics reveals a negative differential conductivity behavior at high frequency, as well as photon assisted peaks. The photon assisted peaks are about an order of magnitude higher in the carbon nanotubes compared to the superlattice. These strong phenomena in carbon nanotubes can be used to obtain domainless amplification of terahertz radiation at room temperature.  相似文献   

5.
马松山  徐慧  郭锐  崔麦玲 《物理学报》2010,59(7):4972-4979
在单电子紧束缚近似下,建立了准一维多链无序体系直流、交流电子跳跃输运模型,通过计算探讨了无序模式、维度效应、温度及外场对其直流、交流电导率的影响.计算结果表明:准一维多链无序体系的直流、交流电导率随着格点能量无序度的增大而减小,非对角无序具有增强体系电子输运能力的作用.随着链数的增加,体系的直流、交流电导率增大,但格点能量无序度较小时,维度效应的影响不明显.在对角无序情况下准一维多链无序体系的交流电导率随温度的升高而增大,而在非对角无序模式下却随温度的升高而减小,但对于直流情况,体系的直流电导率随温度的升  相似文献   

6.
We review and compare two models recently used to describe electronic transport in polymer fibers/nanotubes and carbon nanotubes including graphene nanoribbons, namely, variable range hopping (VRH) in different versions and their modifications on the one hand and electric-field-induced phonon-assisted tunneling (PhAT) on the other hand. The VRH model is mainly approved on behalf of the results of temperature dependences. However, the field dependencies of the conductivity in the framework of this model remain practically unexplained. At the same time, the PhAT model describes properly not only temperature dependence of conductivity measured in a wide temperature range, but also conductivity/current dependences on field strength using the same set of parameters characterizing the materials  相似文献   

7.
We investigated the transport of pinned charge density waves (CDWs) that is observed in low dimensional materials. We treated pinned CDWs as moving CDWs that were confined within a typical quantum well amongst the many different types where pinning occurs at the barrier. We calculated the current flowing out of the quantum well by confined CDWs. The calculated conductivity is in good correspondence with experimental data in TTF–TCNQ, where the measured Fröhlich–Peierls temperature is 60 K much higher than the theoretical value of 20 K. The voltage dependence of the conductivity was calculated, where this is easily transformed into the dependence of electric field. The magnetic susceptibility was also calculated with a similar trend of experimental data. The susceptibility is a diamagnetic contribution by CDWs in addition to the constant background Pauli paramagnetic part.  相似文献   

8.
We discuss electron transport through a semiconductor superlattice subject to an electric field parallel to, and a magnetic field perpendicular to, the growth axis using a semiclassical balance equation model. We find that the current–voltage characteristic becomes multistable in a large magnetic field; furthermore, hot electrons display novel features in their current–voltage characteristic, including absolute negative conductivity and a spontaneously generated dc current at zero bias.  相似文献   

9.
聚酰亚胺电导率随温度和电场强度的变化规律   总被引:3,自引:0,他引:3       下载免费PDF全文
王松  武占成  唐小金  孙永卫  易忠 《物理学报》2016,65(2):25201-025201
介质深层充电对航天器安全运行构成了重大威胁.以聚酰亚胺为代表的此类聚合物绝缘介质的电导率受温度影响显著,又因为充电过程中局部产生强电场(10~7V/m量级),因此,其电导率模型需要综合考虑温度和强电场的影响,这对介质深层充电的仿真评估意义重大.已有的两类模型,不是低温区间不适用,就是没有充分考虑强电场的影响.基于跳跃电导理论,本文分析对比了现有电导率模型,提出了适用于较宽温度范围且合理考虑强电场增强效应的电导率新模型,并采用某型聚酰亚胺电导率测试数据做出验证.此外,为了提高新模型在强电场下的低温适用范围,尝试对强电场因子中的温度做变换,取得了满意的效果.参数敏感度分析表明新模型在电导率拟合与外推方面具有参数少、适用性强的优势.  相似文献   

10.
Multiwall carbon nanotubes and conducting polyaniline, doped with dodecylbenzenesulfonic acid, are blended by employing the solubility of both materials in chloroform. Pellets are made by pressing the dried powder of the obtained composite, and films by sedimentary deposition onto a plastic substrate. In these composites, the advantageous properties of carbon nanotubes can be utilized in fully conducting bulk and planar structures while the strong decrease of the conductivity of doped polyaniline at low temperatures is simultaneously suppressed. The nanotube content in pellets can be as high as 40% by weight, and this wide range leads to a control over the shape and magnitude of the conductivity versus temperature curves. As the nanotube content grows, the temperature dependence of the conductivity becomes less steep, which is similar to the effect of annealing temperature on the conductivity of certain polycrystalline graphene films. In our case, this change is most likely caused by the increase of the density of highly conducting channels and not by homogeneous delocalization effects.  相似文献   

11.
A procedure for optimizing a field-emission cathode based on carbon nanotubes (CNTs) is developed. An array of identical equidistant vertical CNTs is considered. The optimization procedure takes into account the effect of screening of an electric field by neighboring nanotubes by solving a Laplace equation and the thermal instability of nanotubes, which limits the emission current density of a nanotube, by solving a heat conduction equation. The relation between the emission current and the applied voltage is described by the Fowler-Nordheim relationship containing the CNT tip temperature as a parameter. Upon optimization, the optimum distance between CNTs that ensures the maximum emission current density is calculated. The calculation results demonstrate that this parameter depends substantially on both the applied voltage and the nanotube geometry. These dependences are weakly sensitive to the choice of the transport coefficients (thermal conductivity, electrical conductivity) of nanotubes.  相似文献   

12.
The variation of conduction in island metallic Ti, Co, W, and FeNi films in weak electric field is studied. The variation of the differential conductivity of island metallic films with an electric field at temperatures from T = 77 to 300 K is measured, as well as the temperature dependence of the differential conductivity in the same temperature range. It is shown that a thermally activated conduction mode is realized in such structures. The mechanism of variation of conductivity of island metallic films in a weak electric field is discussed.  相似文献   

13.
Based on a tight-binding disordered model describing a single electron band, we establish a direct current (dc) electronic hopping transport conductance model of one-dimensional diagonal disordered systems, and also derive a dc conductance formula. By calculating the dc conductivity, the relationships between electric field and conductivity and between temperature and conductivity are analysed, and the role played by the degree of disorder in electronic transport is studied. The results indicate the conductivity of systems decreasing with the increase of the degree of disorder, characteristics of negative differential dependence of resistance on temperature at low temperatures in diagonal disordered systems, and the conductivity of systems decreasing with the increase of electric field, featuring the non-Ohm's law conductivity.  相似文献   

14.
The kinetics of main types of charged and excited particles present in a low-current discharge in an argon–mercury vapor mixture used in gas-discharge illuminating lamps has been investigated in a wide interval of the reduced electric field strength and temperature. Mechanisms behind the production and loss of ions and metastable atoms have been discovered, and the temperature dependences of their contributions to maintaining their balance have been determined. It has been shown that, when the discharge is initiated in the lamp and the mercury content in the mixture is low, the ionization coefficient exceeds that in pure argon, which is almost exclusively due to the Penning reaction. The influence of this reaction grows with a reduction of the electric field strength in the interelectrode gap. The dependences of the discharge ignition voltage on the interelectrode gap (Paschen curves) for different temperatures of the mixture have been calculated, and the nonmonotonicity of the temperature dependence of the ignition voltage has been explained.  相似文献   

15.
The regularities of ion-electron processes in an undoped PbWO4 single crystal upon transition to a quasi-equilibrium state in an external dc electric field with a linear variation in the temperature in the range 290–600 K are investigated using different methods. The total conductivity, thermally stimulated polarization current, and thermally stimulated depolarization current are measured. It is assumed that the temperature dependence of the conductivity can be described within the theory of small-radius polarons. The thermally stimulated polarization (depolarization) currents are interpreted in terms of the space-charge (peaks of the current in the range 400–550 K) and dipole (peaks of the current in the range 290–370 K) mechanisms of generation of a polarization charge in the sample. The inference is drawn that the dominant contribution to the dipole polarization is made by dipolons, namely, doubly charged (cation-anion) vacancy pairs coupled through electrostatic interaction. The basic parameters of relaxation phenomena and charge transfer are calculated.  相似文献   

16.
The effect of atomic hydrogen adsorption on the conduction and diffusion properties of carbon nanotubes of zigzag type in an external electric field is considered. The model of adsorption of atomic hydrogen on the surface of single-walled carbon nanotubes of zigzag type is based on the single-impurity periodic Anderson model. The theoretical calculation of the diffusion coefficient and electrical conductivity of carbon nanotubes of zigzag type doped with hydrogen atoms is carried out in the relaxation time approximation. It has been revealed that the electrical conductivity and electron diffusion coefficient decrease with increasing concentration of adsorbed hydrogen atoms. It has been shown that the dependence of the electrical conductivity and the diffusion coefficient on the amplitude of the constant electric field at the constant concentration of hydrogen adatoms is nonlinear.  相似文献   

17.
It is shown that in a semiconductor with spatially periodical concentration of impurities it is possible to attain a situation when the conductivity varies under d.c. applied electric field periodically with time, i.e. oscillations of current can occur. The occurence of such oscillations is the consequence of the inertia of processes taking place in the semiconductor.  相似文献   

18.
Electrooptic phenomena caused by weak electric fields, much lower than those needed for the helix unwinding, in helical smectic liquid crystals were studied in thin planar samples. The investigations were performed in chiral liquid crystal 4-(1-methyl-heptyloxycarbonyl) phenyl 4′-(3-butanoyloxy propyl-1-oxy) biphenyl-4-carboxylate which exhibits antiferro-electric properties. We have found that electric field applied to a helical smectic liquid crystal caused two effects. First, the helix was deformed and the position of effective optic axis changed by an angle proportional to the field strength. The second effect, quadratic in field, causes the change in the shape of the indicatrix. As a consequence, the relative changes in the light intensity caused by external electric field consist of two components. The first component represents the modulation with the fundamental frequency and the second one with the doubled frequency (second harmonic of the electrooptic effect). The ab- solute values of the first- and second-order electrooptic coefficients have been determined and their temperature dependence discussed.  相似文献   

19.
The electrical properties of a polymer composite with carbon nanotube additives have been analyzed. The state of the system near the percolation threshold, when charge is transferred along a single percolation path, has been considered. For this state, the current–voltage characteristics of a percolation chain made up of carbon nanotubes have been calculated under the assumption that the contact resistance between neighboring nanotubes is much higher than the intrinsic resistance of the nanotubes. According to recent data, the distance between neighboring (contacting) nanotubes has been assumed to be randomly distributed. It has been shown that, under the given conditions, the current–voltage characteristic is essentially nonlinear. This indicates the nonohmic conductivity of the composites. The dependence of the current–voltage characteristic on the spread of the contact distribution over distances has been discussed.  相似文献   

20.
The dependence of the d.c. conductivity of single crystals of TTF-TCNQ on the electric field strength has been investigated. At 4.2 K drastic deviations from Ohm's law are observed. At an electric field strength of 300–600 V/cm, dependent on the room temperature conductivity, a reversible breakdown occurs connected with a rise of the conductivity by about three orders of magnitude. Similar effects have been found in single crystals of (TTF)7J5 and (TTF)J2 in the temperature range around 100 K. Possible mechanisms responsible for this large conductivity changes are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号