首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We construct multiparameter quantizations of reductive Lie algebras which have the property of universality within a certain class of deformations. The universal deformations can be defined so that the algebra structure on each simple component is the same as that of the standard one-parameter quantization, the remaining parameters being relegated to the coalgebra structure. We discuss an example in which only the latter parameters appear, as a special case of deformations of a semisimple algebra whose simple components remain classical. Deformations are defined as algebras over power series rings and it is essential to require them to be torsion free to secure the universality. The Poincaré-Birkhoff-Witt theorem and the torsion freeness are established for the universal deformation on the basis of results on the representation theory of the deformed algebras.  相似文献   

2.
3.
4.
We present a mathematical study of the differentiable deformations of the algebras associated with phase space. Deformations of the Lie algebra of C functions, defined by the Poisson bracket, generalize the well-known Moyal bracket. Deformations of the algebra of C functions, defined by ordinary multiplication, give rise to noncommutative, associative algebras, isomorphic to the operator algebras of quantum theory. In particular, we study deformations invariant under any Lie algebra of “distinguished observables”, thus generalizing the usual quantization scheme based on the Heisenberg algebra.  相似文献   

5.
6.
We discuss the notion of representing the values of physical quantities by the real numbers, and its limits to describe the nature to be understood in the relation to our appreciation that the quantum theory is a better theory of natural phenomena than its classical analog. Getting from the algebra of physical observables to their values for a fixed state is, at least for classical physics, really a homomorphic map from the algebra into the real number algebra. The limitation of the latter to represent the values of quantum observables with noncommutative algebraic relation is obvious. We introduce and discuss the idea of the noncommutative values of quantum observables and its feasibility, arguing that at least in terms of the representation of such a value as an infinite set of complex numbers, the idea makes reasonable sense theoretically as well as practically.  相似文献   

7.
Time-dependent expectation values and correlation functions for many-body quantum systems are evaluated by means of a unified variational principle. It optimizes a generating functional depending on sources associated with the observables of interest. It is built by imposing through Lagrange multipliers constraints that account for the initial state (at equilibrium or off equilibrium) and for the backward Heisenberg evolution of the observables. The trial objects are respectively akin to a density operator and to an operator involving the observables of interest and the sources. We work out here the case where trial spaces constitute Lie groups. This choice reduces the original degrees of freedom to those of the underlying Lie algebra, consisting of simple observables; the resulting objects are labeled by the indices of a basis of this algebra. Explicit results are obtained by expanding in powers of the sources. Zeroth and first orders provide thermodynamic quantities and expectation values in the form of mean-field approximations, with dynamical equations having a classical Lie–Poisson structure. At second order, the variational expression for two-time correlation functions separates–as does its exact counterpart–the approximate dynamics of the observables from the approximate correlations in the initial state. Two building blocks are involved: (i) a commutation matrix which stems from the structure constants of the Lie algebra; and (ii) the second-derivative matrix of a free-energy function. The diagonalization of both matrices, required for practical calculations, is worked out, in a way analogous to the standard RPA. The ensuing structure of the variational formulae is the same as for a system of non-interacting bosons (or of harmonic oscillators) plus, at non-zero temperature, classical Gaussian variables. This property is explained by mapping the original Lie algebra onto a simpler Lie algebra. The results, valid for any trial Lie group, fulfill consistency properties and encompass several special cases: linear responses, static and time-dependent fluctuations, zero- and high-temperature limits, static and dynamic stability of small deviations.  相似文献   

8.
We construct algebraic-geometric families of genus one (i.e. elliptic) current and affine Lie algebras of Krichever-Novikov type. These families deform the classical current, respectively affine Kac-Moody Lie algebras. The construction is induced by the geometric process of degenerating the elliptic curve to singular cubics. If the finite-dimensional Lie algebra defining the infinite dimensional current algebra is simple then, even if restricted to local families, the constructed families are non-equivalent to the trivial family. In particular, we show that the current algebra is geometrically not rigid, despite its formal rigidity. This shows that in the infinite dimensional Lie algebra case the relations between geometric deformations, formal deformations and Lie algebra two-cohomology are not that close as in the finite-dimensional case. The constructed families are e.g. of relevance in the global operator approach to the Wess-Zumino-Witten-Novikov models appearing in the quantization of Conformal Field Theory. The algebras are explicitly given by generators and structure equations and yield new examples of infinite dimensional algebras of current and affine Lie algebra type.  相似文献   

9.
The relation between the appearance of accidental degeneracy in the energy levels of a given Hamiltonian and its symmetry group is probed. This is done by analyzing the very simple problem of an oscillator to which a particular spin-orbit and centrifugal force are added. The operators that connect all the states of given energy as well as their corresponding observables in the classical limit are found. The Poisson bracket relations between these observables leads to a Lie algebra U(3) × SU(2), but it does not translate into a Lie algebra for the commutators of the corresponding operators, as some matrix elements of commutators, corresponding to Poisson brackets that are zero, do not vanish. Thus while accidental degeneracy in the quantum problem may lead to a larger group in the classical limit, it is not always given by the dimensions of the irreducible representations of this group.  相似文献   

10.
The integrals of motion of classical two-dimensional superintegrable systems, with polynomial integrals of motion, close in a restrained polynomial Poisson algebra; the general form of the quadratic case is investigated. The polynomial Poisson algebra of the classical system is deformed into a quantum associative algebra of the corresponding quantum system, and the finite-dimensional representations of this algebra are calculated by using a deformed parafermion oscillator technique. The finite-dimensional representations of the algebra are determined by the energy eigenvalues of the superintegrable system. The calculation of energy eigenvalues is reduced to the roots of algebraic equations in the quadratic case.  相似文献   

11.
The integrals of motion of the classical two-dimensional superintegrable systems close in a restrained polynomial Poisson algebra, whose general form is discussed. Each classical superintegrable problem has a quantum counterpart, a quantum superintegrable system. The polynomial Poisson algebra is deformed to a polynomial associative algebra, the finite-dimensional representations of this algebra are calculated by using a deformed parafermion oscillator technique. It is conjectured that the finite-dimensional representations of the polynomial algebra are determined by the energy eigenvalues of the superintegrable system. The calculation of energy eigenvalues is reduced to the solution of algebraic equations, which are universal for a large number of two-dimensional superintegrable systems. Presented at the 9th Colloquium “Quantum Groups and Integrable Systems”, Prague, 22–24 June 2000.  相似文献   

12.
In Gerstenhaber's classical theory of deformations, the deformation parameter commutes with the original algebra. Motivated by some non classical deformations which recently appeared for quantization of Nambu mechanics, we introduce new deformations where the parameter no longer commutes with the original algebra. We find the associated cohomology and Gerstenhaber algebra and give rigidity and integrability criterions. We show that the Weyl algebra (though rigid in classical theory) can be nontrivially deformed, in super-commutative theory, to the supersymmetry enveloping algebra   相似文献   

13.
We study the quantum field theory (QFT) of a free, real, massless and curvature coupled scalar field on self-similar symmetric spacetimes, which are deformed by an abelian Drinfel’d twist constructed from a Killing and a homothetic Killing vector field. In contrast to deformations solely by Killing vector fields, such as the Moyal-Weyl Minkowski spacetime, the equation of motion and Green’s operators are deformed. We show that there is a *-algebra isomorphism between the QFT on the deformed and the formal power series extension of the QFT on the undeformed spacetime. We study the convergent implementation of our deformations for toy-models. For these models it is found that there is a *-isomorphism between the deformed Weyl algebra and a reduced undeformed Weyl algebra, where certain strongly localized observables are excluded. Thus, our models realize the intuitive physical picture that noncommutative geometry prevents arbitrary localization in spacetime.  相似文献   

14.
The symplectic vector spaceE of theq andp's of classical mechanics allows a basis free definition of the Poisson bracket in the symmetric algebra overE. Thus the symmetric algebra overE becomes a Lie algebra, which can be compared with the quantum mechanical Weyl algebra with its commutator Lie structure. The universality of the Weyl algebra is used to study the well-known ‘classical’ Moyal realisation of the Weyl algebra in the symmetric algebra. Quantisations are defined as linear mappings of the underlying vector spaces of the two algebras. It is shown that the classical Lie algebra is −2 graded, whereas the quantum Lie algebra is not. This proves that they are not isomorphic, and hence there is no Dirac quantisation.  相似文献   

15.
In this paper we introduce a kind of “noncommutative neighbourhood” of a semiclassical parameter corresponding to the Planck constant. This construction is defined as a certain filtered and graded algebra with an infinite number of generators indexed by planar binary leaf-labelled trees. The associated graded algebra (the classical shadow) is interpreted as a “distortion” of the algebra of classical observables of a physical system. It is proven that there exists a q-analogue of the Weyl quantization, where q is a matrix of formal variables, which induces a nontrivial noncommutative analogue of a Poisson bracket on the classical shadow.  相似文献   

16.
In this paper, we compute the Hochschild homology of elliptic Sklyanin algebras. These algebras are deformations of polynomial algebra with a Poisson bracket called the Sklyanin Poisson bracket.   相似文献   

17.
The algebra of polynomials in operators that represent generalized coordinate and momentum and depend on the Planck constant is defined. The Planck constant is treated as the parameter taking values between zero and some nonvanishing h 0. For the later of these two extreme values, introduced operator algebra becomes equivalent to the algebra of observables of quantum mechanical system defined in the standard manner by operators in the Hilbert space. For the vanishing Planck constant, the generalized algebra gives the operator formulation of classical mechanics since it is equivalent to the algebra of variables of classical mechanical system defined, as usually, by functions over the phase space. In this way, the semiclassical limit of kinematical part of quantum mechanics is established through the generalized operator framework.  相似文献   

18.

Automorphisms of the infinite-dimensional Onsager algebra are introduced. Certain quotients of the Onsager algebra are formulated using a polynomial in these automorphisms. In the simplest case, the quotient coincides with the classical analog of the Askey–Wilson algebra. In the general case, generalizations of the classical Askey–Wilson algebra are obtained. The corresponding class of solutions of the non-standard classical Yang–Baxter algebra is constructed, from which a generating function of elements in the commutative subalgebra is derived. We provide also another presentation of the Onsager algebra and of the classical Askey–Wilson algebras.

  相似文献   

19.
We define what it means for a state in a convex cone of states on a space of observables to be generalized-entangled relative to a subspace of the observables, in a general ordered linear spaces framework for operational theories. This extends the notion of ordinary entanglement in quantum information theory to a much more general framework. Some important special cases are described, in which the distinguished observables are subspaces of the observables of a quantum system, leading to results like the identification of generalized unentangled states with Lie-group-theoretic coherent states when the special observables form an irreducibly represented Lie algebra. Some open problems, including that of generalizing the semigroup of local operations with classical communication to the convex cones case, are discussed. PACS: 03.65.Ud.  相似文献   

20.
In [1, 2] we established and dicussed the algebra of observables for 2+1 gravity at both the classical and quantum level. Here our treatment broadens and extends previous results to any genusg with a systematic discussion of the centre of the algebra. The reduction of the number of independent observables to 6g-6(g>1) is treated in detail with a precise classification forg=1 andg=2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号