首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 694 毫秒
1.
Yb3+/Er3+ co-doped Gd6MoO12 and Yb3+/Er3+/Li+ tri-doped Gd6MoO12 phosphors were prepared by adjusting the annealing temperature via the high temperature solid-state method. Under the excitation of 980 nm semiconductor, the upconversion luminescence properties were investigated and discussed. In the experimental process, we get the optimum Yb3+ concentration and the concentration quench effect will happen while the concentration extends the given region. According to the Yb3+ concentration quenching effects, the critical distance between Yb3+ ions had been calculated. The measured UC luminescence exhibited a strong red emission near 660 nm and green emission at 530 nm and 550 nm, which are due to the transitions of Er3+(4F9/2, 2H11/2, 4S3/2)  Er3+(4I15/2). Then the effect of excitation power density in different regions on the upconversion mechanisms was investigated and the calculated results demonstrate that the green and red upconversion is a two-photon process. A possible mechanism was discussed. After Li+ ions mixing, the upconversion emission enhanced largely, and the optimum Li+ concentration was obtained while fixed the Yb3+ and Er3+ on the above optimum concentration. This enhancement owns to the decrease of the local symmetry around Er3+ after Li+ ions doping into the system. This result indicates that Li+ is a promising candidate for improving luminescence in some case.  相似文献   

2.
Transparent phosphate glass ceramics co-doped with Er3+ and Yb3+ in the system P2O5Li2OCaF2TiO2 were successfully synthesized by melt-quenching and subsequent heating. Formation of the nanocrystals was confirmed by X-ray powder diffraction. Judd–Ofelt analyses of Er3+ ions in the precursor glasses and glass ceramics were performed to evaluate the intensity parameters Ω2,4,6. Under 975 nm excitation, intense upconversion (UC) and infrared emission (1545 nm) were observed in the glass ceramics by efficient energy transfer from Yb3+ to Er3+. The luminescence processes were explained and the emission cross section was calculated by Fuchtbauer–Ladenburg (F–L) formula. The results confirm the potential applications of Er3+/Yb3+ co-doped glass ceramics as laser and fiber amplifier media.  相似文献   

3.
Yb3+ doped phosphor of Gd2O3 (Gd2O3:Yb3+) have been prepared by solid state reaction method. The structure and the particle size have been determined by X-ray powder diffraction measurements. The average particle size of the phosphor is in between 35 and 50 nm. The particle size and structure of the phosphor was further confirmed by TEM analysis. The visible and NIR luminescence spectra were recorded under the 980 nm laser excitation. The visible upconversion luminescence of Yb3+ ion was due to cooperative luminescence and the presence of rare earth impurity ions. The cooperative upconversion and NIR luminescence spectra as a function of Yb3+ ion concentration were measured and the emission intensity variation with Yb3+ ion concentration was discussed. Yb3+ energy migration quenched the cooperative luminescence of Gd2O3:Yb3+ phosphor with doping level over 5%, while the NIR emission luminescence continuously increases with increasing Yb3+ ion concentration.  相似文献   

4.
Er3+ doped TiO2–La2O3 glasses modified by ZrO2 have been successfully fabricated by the containerless method with incorporated Yb3+ ions as sensitizers. Under the excitation of 980 and 808 nm diode lasers, visible emissions centered at 534, 554 and 674 nm are observed, which are assigned to the Er3+ transitions of 2H11/24I15/2, 4S3/24I15/2 and 4F9/24I15/2, respectively. The emission signals are so strong that they can be observed by naked eyes even at pumping power as low as 20 mW. Measurements of pump-power dependent intensity and time-resolved decay behavior of upconversion luminescence show that two-photon excited state absorption (ESA) and energy transfer (ET) between rare earth ions are the predominant mechanisms for upconversion emissions. Besides, the intensity of upconversion luminescence has been enhanced by increasing the concentration of ZrO2 in these rare earth doped bulk titanate glasses.  相似文献   

5.
苏方宁  邓再德 《中国物理》2006,15(5):1096-1100
The Er^3+/Yb^3+ co-doped TeO2-Nb2O5-Li2O glass is prepared by conventional melting method, and its upconversion spectra are measured. The intense green upconversion luminescence upon excitation with a 976 nm laser diode is observed with the naked eyes. The dependence of luminescence intensity on the ratio of Yb^3+/Er^3+ is discussed in detail, and the relationship between the ratio of green luminescence intensity to red luminescence intensity and the ratio of Yb^3+/Er^3+ is also studied, The luminescence intensity increases with the ratio of Yb^3+/Er^3+ increasing. The ratio of Yb^3+/Er^3+ plays a more important role than the concentration of Er^3+ in determining the upconversion luminescence intensity. The ratio of green luminescence intensity to red luminescence intensity reaches a maximum when ratio of Yb^3+/Er^3+ is 3. Thus the glass could be one of the potential candidates for LD pumping solid-state lasers.  相似文献   

6.
Nd3+, Tm3+ and Yb3+ co-doped NaYF4 upconversion (UC) material was synthesized by the hydrothermal method. The structure of the sample was characterized by the X-ray diffraction, and its UC luminescence properties were investigated in detail. Under the 980 nm semiconductor laser excitation, its UC spectra exhibited distinct emission peaks at 451 nm, 475 nm and 646 nm respectively. On the basis of the comparison of UC spectra between NaYF4:Nd3+,Tm3+,Yb3+ and NaYF4:Tm3+,Yb3+, it was indicated that the existence of Nd3+ ion enhanced the blue emission intensity. The law of luminescence intensity versus pump power proved that the blue emission at 475 nm, and the red emission at 646 nm were the two-photon processes, while the blue emission at 451 nm was a three-photon process.  相似文献   

7.
Ho3+/Yb3+/Tm3+ codoped LiNbO3 polycrystals exhibiting upconversion white-light under 980 nm excitation have been successfully fabricated by the high temperature solid-state reaction method. CIE coordinate of the Ho3+/Yb3+/Tm3+/LiNbO3 polycrystal is (0.34, 0.35), which is very close to the standard equal energy white-light illuminate (0.33, 0.33). Efficient green, red, and blue upconversion emissions have been observed. The luminescent decay dynamics are studied, and rate equations for the blue, green, and red emissions are set up to analyze the upconversion luminescence mechanism. The present results demonstrate that the competition between the linear decay and the upconversion process for the depletion of the intermediate excited states plays an important role in upconversion mechanism. The LiNbO3 with upconversion white-light will be a promising luminous material.  相似文献   

8.
The concentration-dependent luminescence properties of sol–gel-derived nanocrystalline Lu3(1?x)Er3xGa5O12 powders (where x=0.01, 0.05 and 0.1) have been studied. Laser-excited luminescence spectra, emission decays and upconversion luminescence of Er3+-doped Lu3Ga5O12 nanocrystalline samples have been measured. The decay curve of the (2H11/2,4S3/2) emission exhibits a non-exponential behavior presumably due to cross-relaxation process. Moreover, near-infrared to visible upconversion luminescence has been observed in the green region for 1.0 mol% Er3+ ions in Lu3Ga5O12 nanocrystals upon 815 nm excitation. The power dependence of the anti-Stokes luminescence suggests that upconversion is probably achieved through the sequential absorption of two photons. To the best of our knowledge, this is the first report on the preparation and optical properties of Er3+-doped Lu3Ga5O12 in the form of nanocrystalline powders.  相似文献   

9.
This work reports the upconversion luminescence properties of Tm3+/Yb3+ ions in lead tungstate tellurite (LTT) glasses. Judd–Oflet intensity parameters have been obtained from the absorption band intensities of Tm3+ singly-doped and Tm3+/Yb3+ co-doped LTT glasses. The spontaneous emission probabilities, radiative lifetimes and branching ratios for 1G4 and 3H4 emission levels of Tm3+ have been determined. Upconversion luminescence has been observed by exciting the samples at 980 nm (Yb3+:2F7/22F5/2) at room temperature. Four upconversion emission bands corresponding to the 1G43H6 (477 nm), 1G43F4 (651 nm), 1G43H5 (702 nm) and 3H43H6 (810 nm) transitions have been identified. The relative variation in the intensities of upconversion bands, the different channels responsible for upconversion spectra and the effect of Yb3+ ions concentration on the upconversion luminescence of Tm3+ ions have also been discussed.  相似文献   

10.
SrY2−x(MoO4)4:Er3+/Yb3 phosphors with doping concentrations of Er3+ and Yb3+ (x = Er3+ + Yb3+, Er3+ = 0.05, 0.1, 0.2 and Yb3+ = 0.2, 0.45) have been successfully synthesized by a cyclic microwave-modified sol–gel method, and the upconversion photoluminescence properties have been investigated. Well-crystallized particles showed a fine and homogeneous morphology with particle sizes of 1–3 μm. Under excitation at 980 nm, SrY2(MoO4)4:Er3+/Yb3+ particles exhibited a strong 525-nm, weak 550-nm emission bands in the green region, and a very weak 655-nm emission band in the red region. The possible mechanism of the green and red emissions was discussed in detail under consideration of a two-photon process. The Raman spectra of the particles indicated the presence of strong peaks at both higher and lower frequencies.  相似文献   

11.
The YAG nanopowders were prepared by a co-precipitation method using nitrate and ammonium hydrogen carbonate as raw materials. To obtain homogenous precipitate, reverse-strike (adding salt solutions to the precipitant solution) technique was adopted. Therefore, single (Tm3+) and codoped (Tm3+–Yb3+) YAG nanopowders with a size between 40–90 nm have been obtained.Blue upconversion emission at around 480 nm has been found in YAG: Tm3+ nanopowders under excitation to the 3H4 level of Tm3+ at around 800 nm. However, this upconversion emission in nanopowders codoped with Tm3+–Yb3+ ions is increased by a factor of about 10. The analysis of the temporal evolution of the involved levels and the dependence of the upconversion intensity on the pump power at 800 nm allowed to distinguish the upconversion mechanism. In YAG: Tm3+ nanopowders the upconversion mechanism is due to excited state absorption processes. However, in the codoped samples, Yb3+ ions acts as the sensitizers; in consequence, the blue upconversion is strongly increased.  相似文献   

12.
Ternary molybdate NaCaGd1−x(MoO4)3:Er3+/Yb3+ phosphors with the proper doping concentrations of Er3+ and Yb3+ (x = Er3+ + Yb3+, Er3+ = 0, 0.05, 0.1, 0.2 and Yb3+ = 0, 0.2, 0.45) were successfully synthesized by microwave sol–gel method for the first time. Well-crystallized particles formed after heat-treatment at 900 °C for 16 h showed a fine and homogeneous morphology with particle sizes of 3–5 μm. The optical properties were examined comparatively using photoluminescence emission and Raman spectroscopy. Under excitation at 980 nm, the doped particles exhibited a strong 525-nm emission band, a weak 550-nm emission band in the green region, which correspond to the 2H11/2  4I15/2 and 4S3/2  4I15/2 transitions, and a very weak 655-nm emission band in the red region, which corresponds to the 4F9/2  4I15/2 transition. The optimal Yb3+:Er3+ ratio was obtained to be 9:1, as indicated by the composition-dependent quenching effect of Er3+ ions. The pump power dependence of upconversion emission intensity and Commission Internationale de L’Eclairage chromaticity coordinates of the phosphors were evaluated in detail.  相似文献   

13.
The Er3+/Yb3+ co-doped Y2Ti2O7 phosphors were synthesized by the sol–gel method. XRD, TEM, and photoluminescence spectra of samples were measured and studied. The results demonstrate that the Y2Ti2O7 would transform from the amorphous to nanocrystalline at about 750 °C. The mechanism of both upconversion and near infrared (NIR) photoluminescence and their changes with annealing temperature were analyzed. What is more, the pump-saturation effect of NIR emission and the anomalous slopes of the fitted straight line in the double-logarithmic plots for upconversion emissions were found in the nanocrystalline samples, which can be ascribed to domination of upconversion over linear decay for the 4I11/2 and 4I13/2 state and the saturation of 4I13/2 state in Er3+ ions largely owing to the energy back-transfer process. They are induced by high pump power and Yb3+ ions concentration.  相似文献   

14.
The effects of Yb3+ doping on up conversion in Yb3+–Er3+ co-doped cerium oxide nanocrystals are reported. Green emission around 545 and 560 nm attributed to the 2H11/2, 4S3/24I15/2 transitions and red emission around 660 and 680 nm due to 4F9/24I15/2 transitions under 975 nm excitation were studied at room temperature. Both green and red emission intensities increase as the Yb3+ concentration increases from 0%. Emission strength starts to decrease after the Yb3+ concentration exceeds a critical amount. The green emission strength peaks around 1% Yb3+ concentration while the red emission strength peaks around 4%. An explanation of competition between different decay mechanisms is presented to account for the luminescence dependence on Yb3+ concentration. Also, the application of up converting nanoparticles in biomedical imaging is demonstrated.  相似文献   

15.
Cubic phase Lu2O3:Er3+/Yb3+ nanocrystal phosphors were prepared by sol–gel method. Fourier transform infrared (FT-IR) spectra were measured to evaluate the vibrational feature of the samples. Green and red radiations were observed upon 980 nm diode laser excitation. Laser power and Er3+ or Yb3+ doping concentration dependence of upconversion luminescence were studied to understand upconversion mechanisms. Excited state absorption, cross relaxation and energy transfer processes are the possible mechanisms for the visible emissions.  相似文献   

16.
用高温熔融法制备了系列Er3+/Yb3+共掺,Ho3+/Yb3+共掺,和Er3+/Yb3+/Ho3+三掺碲酸盐玻璃,在975nm激光抽运下三种掺杂玻璃中都出现了较强的绿光和红光上转换.研究了Yb3+离子对Er3+和Ho3+离子上转换发光强度的影响以及Yb3+→Er关键词: 3+/Yb3+/Ho3+共掺')" href="#">Er3+/Yb3+/Ho3+共掺 碲酸盐玻璃 光谱性质 上转换  相似文献   

17.
The quasi-one dimensional (Q1D) Er3+–Yb3+ codoped single-crystal MoO3 ribbons with width range from 1 to 5 μm, and maximum length about 30 μm have been synthesized by the vapor transport method. The samples were characterized using X-ray diffraction, scanning electron microscopy, transmission electron microscope, and luminescence spectra. By a 975 nm laser diode (LD) as excitation source, the blue, green and red emission bands centered at about 408, 532, 553 and 657 nm were detected, which attributed to the 2H9/2  4I15/2, 2H11/2, 4S3/2  4I15/2 and 4F9/2  4I15/2 transitions of Er3+, respectively. The three-, and two-photon process was responsible for the blue, green and red up-conversion emissions mechanism for the Q1D Er3+–Yb3+ codoped single-crystal MoO3 ribbons, respectively. The results suggested that the Q1D Er3+–Yb3+ codoped single-crystal MoO3 ribbons will have potential applications in remote bio-imaging and surface enhanced Raman scattering.  相似文献   

18.
The temperature of a transparent Cd0.7Sr0.3F2: Er3+(4%)–Yb3+(6%) crystalline plate 0.3 mm thick heated by a near-infrared (974 nm) laser diode and probed by a red (652 nm) laser was accurately evaluated as a function of the infrared power absorbed by the Yb3+ ions.The green emission generated by the Er3+ ions directly excited by the red laser consists of three major lines (coming from three individual Stark levels in thermal equilibrium) whose intensities were measured according to the absorbed infrared power and the distance between the heated and probed volumes, to evaluate the heating induced by the excitation of Yb3+ and Er3+ ions at 974 nm by applying the Boltzmann's equation linking the populations of emitting levels to the temperature. In the case where the Yb3+ ions excited by the laser diode are situated at a distance of about 0.5 mm from the edge of the crystal and for an absorbed infrared power of 100 mw, the crystal's edge temperature is reaching 80 °C after 20 s of continuous excitation at 974 nm.  相似文献   

19.
The Er3+/Yb3+ co-doped TeO2–TiO2–K2O glasses were prepared by conventional melting procedures, and their upconversion spectra were performed. The dependence of luminescence intensity on the ratio of Yb3+/Er3+ was studied, and the relationship between green upconversion luminescence intensity and Er3+ concentration is discussed in detail. The 546 nm green upconversion luminescence intensity is optimised in the studied glasses either when the Yb3+/Er3+ ratio is 25/1 and Er3+ concentration is 0.1 mol%, or when the Yb3+/Er3+ ratio is 10/1 and Er3+ concentration is 0.15 mol%. These glasses could be one of the potential candidates for LD pumping microchip solid-state lasers.  相似文献   

20.
An analysis of the intense blue upconversion emission at 476 and 488 nm in Tm3 +/Yb3 + codoped Y2O3 under excitation power density of 86.7 W/cm2 available from a diode laser emitting at 976 nm, has been undertaken. Fluorescence intensity ratio (FIR) variation of temperature-sensitive blue upconversion emission at 476 and 488 nm in this material was recorded in the temperature range from 303 to 753 K. The maximum sensitivity derived from the FIR technique of the blue upconversion emission is approximately 0.0035 K? 1. The results imply that Tm3 +/Yb3 + codoped Y2O3 is a potential candidate for the optical temperature sensor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号