首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Crack free and smooth surfaces of poly [4,5-difluoro 2,2-bis (trifluoromethyl)-(1,3 dioxole)-co-tetrafluoroethylene] (TFE-co-TFD) thin films have been deposited by wet chemical dip coating technique on polished quartz and glass slide substrates. The deposited films have been subjected to annealing at different temperatures ranging from 100 to 500 °C for 1 h in argon atmosphere. The elemental composition of the as-deposited (xerogel) thin film as well as film annealed at 400 °C was measured by X-ray photoelectron spectroscopy and observed that there was no change in the composition of the film. X-ray diffraction pattern revealed the amorphous behaviour of both as-deposited and film annealed at 400 °C. Surface morphology and elemental composition of the films have been examined by employing scanning electron microscopy attached with energy dispersive X-ray analyser, respectively. It was found that as the annealing temperature increased from 100 to 400 °C, nano-hemisphere-like structures have been grown, which in turn has shown increase in the water contact angle from 122o to 148o and oil (peanut) contact angle from 85° to 96°. No change in the water contact angle (122°) has been observed when the films deposited at room temperature were heated in air from 30 to 80 °C as well as exposed to steam for 8 days for 8 h/day indicating thermal stability of the film.  相似文献   

2.
Be3N2 thin films have been grown on Si(1 1 1) substrates using the pulsed laser deposition method at different substrate temperatures: room temperature (RT), 200 °C, 400 °C, 600 °C and 700 °C. Additionally, two samples were deposited at RT and were annealed after deposition in situ at 600 °C and 700 °C. In order to obtain the stoichiometry of the samples, they have been characterized in situ by X-ray photoelectron (XPS) and reflection electron energy loss spectroscopy (REELS). The influence of the substrate temperature on the morphological and structural properties of the films was investigated using scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD). The results show that all prepared films presented the Be3N2 stoichiometry. Formation of whiskers with diameters of 100-200 nm appears at the surface of the films prepared with a substrate temperature of 600 °C or 700 °C. However, the samples grown at RT and annealed at 600 °C or 700 °C do not show whiskers on the surface. The average root mean square (RMS) roughness and the average grain size of the samples grown with respect the substrate temperature is presented. The films grown with a substrate temperature between the room temperature to 400 °C, and the sample annealed in situ at 600 °C were amorphous; while the αBe3N2 phase was presented on the samples with a substrate temperature of 600 °C, 700 °C and that deposited with the substrate at RT and annealed in situ at 700 °C.  相似文献   

3.
Structural, dielectric and ferroelectric properties of tungsten (W) substituted SrBi2(Ta1−xWx)2O9 (SBTW) [x=0.0, 0.025, 0.05, 0.075, 0.1 and 0.2] have been studied as a function of sintering temperature (1100-1250 °C). X-ray diffraction patterns confirm the single-phase layered perovskite structure formation up to x=0.05 at all sintering temperatures. The present study reveals an optimum sintering temperature of 1200 °C for the best properties of SBTW samples. Maximum Tc of ∼390 °C is observed for x=0.20 sample sintered at 1200 °C. Peak-dielectric constant (εr) increases from ∼270 to ∼700 on increasing x from 0.0 to 0.20 at 1200 °C sintering temperature. DC conductivity of the SBTW samples is nearly two to three orders lower than that of the pristine sample. Remnant polarization (Pr) increases with the W content up to x≤0.075. A maximum 2Pr (∼25 μC/cm2) is obtained with x=0.075 sample sintered at 1200 °C. The observed behavior is explained in terms of improved microstructural features, contribution from the oxygen and cationic vacancies in SBTW. Such tungsten substituted samples sintered at 1200 °C exhibiting enhanced dielectric and ferroelectric properties should be useful for memory applications.  相似文献   

4.
Lycopene extraction was carried out via the ultrasonic assisted extraction (UAE) with response surface methodology (RSM). Sonication enhanced the efficiency of relative lycopene yield (enhancement of 26% extraction yield of lycopene in 6 replications at 40.0 min, 40.0 °C and 70.0% v/w in the presence of ultrasound), lowered the extraction temperature and shortened the total extraction time. The extraction was applied with the addition of oxygen-free nitrogen flow and change of water route during water bath sonication. The highest relative yield of lycopene obtained was 100% at 45.0 °C with total extraction time of 50.0 min (30:10:10) and ratio of solvent to freeze-dried tomato sample (v/w) of 80.0:1. Optimisation of the lycopene extraction had been performed, giving the average relative lycopene yield of 99% at 45.6 min, 47.6 °C and ratio of solvent to freeze-dried tomato sample (v/w) of 74.4:1. From the optimised model, the average yield of all-trans lycopene obtained was 5.11 ± 0.27 mg/g dry weight. The all-trans lycopene obtained from the high-performance liquid chromatography (HPLC) chromatograms was 96.81 ± 0.81% with 3.19 ± 0.81% of cis-lycopenes. The purity of total-lycopene obtained was 98.27 ± 0.52% with β-carotene constituted 1.73 ± 0.52% of the extract. The current improved, UAE of lycopene from tomatoes with the aid of RSM also enhanced the extraction yield of trans-lycopene by 75.93% compared to optimised conventional method of extraction. Hence, the current, improved UAE of lycopene promotes the extraction yield of lycopene and at the same time, minimises the degradation and isomerisation of lycopene.  相似文献   

5.
Persistent phosphorescence induced by ultraviolet light in polycrystalline HfO2 and enhancement of the phosphorescence by sintering are investigated. The phosphorescence afterglow emission is in the 1.8-3.2 eV spectral range, with a peak at 2.53 eV. The afterglow intensity is significantly increased by sintering in either inert atmosphere or air. The afterglow light sum measured at room temperature for samples sintered at 1500 °C is more than an order of magnitude higher than that before sintering. In the temperature range −50 to 200 °C, three thermoluminescence (TL) peaks are observed near −10, 30, and 100 °C. The relative contribution of the low-temperature TL peak to the total TL intensity decreases after sintering, and this effect is more pronounced upon sintering in inert atmosphere. Conversely, the contribution of the TL peak near 100 °C increases after sintering. The enhancement of the afterglow by sintering is associated with the observed increase in the intensity of TL peaks at and above room temperature and attributed to an increase in the number of deep charge traps. The room-temperature afterglow time decay has a form consistent with the second-order mechanism, ∝(t0+t)n, and the best-fit values of both fitting parameters t0 and n tend to increase with the sintering temperature.  相似文献   

6.
Hawthorn seed (HS), an important by-product of the Hawthorn industry, is rich in potentially health-promoting flavonoids compounds. In this paper, the ultrasound-assisted extraction (UAE) of FC from HS was investigated. Important variables and their levels were obtained using Plackett-Burman (PB) design and Box-Behnken (BB) design. A mathematical model was developed to show the effects of each variable and their combinatorial interactions on extraction yield of FC. A high coefficient of determination (R2 = 91.26%) indicated good agreement between the experimental and predicted values of FC yield. The optimum levels of these significant parameters were determined using response surface methodology (RSM), which revealed these as follows: ultrasound temperature 65 °C, ultrasonic time 37 min, extraction temperature 91 °C, extraction time 1.5 h, solid-liquid ratio of 1:18, and 72% ethanol. Under the optimum condition, the UAE rate of FC was up to 91.7%, and the yield of FC was 16.45 ± 0.02 mg/g (P < 0.05) that was 1.32-fold the yield of conventional reflux extraction (CRE).  相似文献   

7.
Dry etching of {0 0 0 1} basal planes of highly oriented pyrolytic graphite (HOPG) using active nitridation by nitrogen atoms was investigated at low pressures and high temperatures. The etching process produces channels at grain boundaries and pits whose shapes depend on the reaction temperature. For temperatures below 600 °C, the majority of pits are nearly circular, with a small fraction of hexagonal pits with rounded edges. For temperatures above 600 °C, the pits are almost exclusively hexagonal with straight edges. The Raman spectra of samples etched at 1000 °C show the D mode near 1360 cm−1, which is absent in pristine HOPG. For deep hexagonal pits that penetrate many graphene layers, neither the surface number density of pits nor the width of pit size distribution changes substantially with the nitridation time, suggesting that these pits are initiated at a fixed number of extended defects intersecting {0 0 0 1} planes. Shallow pits that penetrate 1-2 graphene layers have a wide size distribution, which suggests that these pits are initiated on pristine graphene surfaces from lattice vacancies continually formed by N atoms. A similar wide size distribution of shallow hexagonal pits is observed in an n-layer graphene sample after N-atom etching.  相似文献   

8.
TiN/SiNx/TiN(0 0 1) trilayers have been deposited on MgO(0 0 1) substrates using ultra-high vacuum based reactive magnetron sputtering and studied by in situ reflection high energy electron diffraction (RHEED). Depositions were carried out at 500 °C and 800 °C, with SiNx layer thicknesses between 3 and 300 Å. Here, we find that SiNx(0 0 1) layers grown at 800 °C exhibit 1 × 4 surface reconstructions along orthogonal 〈1 1 0〉 directions up to a critical thickness of ∼9 Å, where an amorphous phase forms. Growth of TiN overlayers on the reconstructed SiNx(0 0 1) layers yield RHEED patterns indicating the growth of (0 0 1)-oriented epitaxial layers with a 1 × 1 reconstruction. For the case of amorphous SiNx layers the TiN overlayers grow polycrystalline.  相似文献   

9.
Transparent conducting indium doped zinc oxide was deposited on glass substrate by ultrasonic spray method. The In doped ZnO samples with indium concentration of 3 wt.% were deposited at 300, 350 and 400 °C with 2 min of deposition time. The effects of substrate temperature and annealing temperature on the structural, electrical and optical properties were examined. The DRX analyses indicated that In doped ZnO films have polycrystalline nature and hexagonal wurtzite structure with (0 0 2) preferential orientation and the maximum average crystallite size of ZnO: In before and annealed at 500 °C were 45.78 and 55.47 nm at a substrate temperature of 350 °C. The crystallinity of the thin films increased by increasing the substrate temperature up 350 °C, the crystallinity improved after annealing temperature at 500 °C. The film annealed at 500 °C and deposited at 350 °C show lower absorption within the visible wavelength region. The band gap energy increased from Eg = 3.25 to 3.36 eV for without annealing and annealed films at 500 °C, respectively, indicating that the increase in the transition tail width. This is due to the increase in the electrical conductivity of the films after annealing temperature.  相似文献   

10.
In this work, plasma electrolytic surface carburizing of pure iron in aqueous solution consisting of water, glycerin and NH4Cl was investigated. Surface carburizing was carried out in 20% glycerin solution treated at 750 °C, 800 °C, 900 °C and 950 °C temperatures for 5, 10 and 30 min. The formation of hard carbon-rich layer on the surface of pure iron was confirmed by XRD analysis. Metallographic and SEM studies revealed a rough and dense carburized layer on the surface of the pure iron. Experimental results showed that the thickness of the carburized layers changes with the time and temperature. The average thickness of the carburized layer ranged from 20 to 160 μm. The hardness of the carburized samples decreased with the distance from the surface to the interior of the test material. The average hardness values of the carburized layers on the substrate ranged 550-850 HV, while the hardness of the substrate ranged from 110 HV to 170 HV. The dominant phases formed on the pure iron were found to be a mixture of cementite (Fe3C), martensite (Fe + C) and austenite (FCC iron) confirmed by XRD. Wear resistance in all plasma electrolytic carburized samples is considerably improved in relation to the untreated specimen. After carburizing, surface roughness of the samples was increased. Friction coefficients were also increased because of high surface roughness.  相似文献   

11.
Thermal stability of Ag layer on Ti coated Si substrate for different thicknesses of the Ag layer have been studied. To do this, after sputter-deposition of a 10 nm Ti buffer layer on the Si(1 0 0) substrate, an Ag layer with different thicknesses (150-5 nm) was sputtered on the buffer layer. Post annealing process of the samples was performed in an N2 ambient at a flow rate of 200 ml/min in a temperature range from 500 to 700 °C for 30 min. The electrical property of the heat-treated multilayer with the different thicknesses of Ag layer was examined by four-point-probe sheet resistance measurement at the room temperature. Phase formation and crystallographic orientation of the silver layers were studied by θ-2θ X-ray diffraction analysis. The surface topography and morphology of the heat-treated films were determined by atomic force microscopy, and also, scanning electron microscopy. Four-point- probe electrical measurement showed no considerable variation of sheet resistance by reducing the thickness of the annealed Ag films down to 25 nm. Surface roughness of the Ag films with (1 1 1) preferred crystallographic orientation was much smaller than the film thickness, which is a necessary condition for nanometric contact layers. Therefore, we have shown that the Ag layers with suitable nano-thicknesses sputtered on 10 nm Ti buffer layer were thermally stable up to 700 °C.  相似文献   

12.
FePt and FePt/Ag multilayered nanowires were fabricated by a pulseplating technique in nanoporous anodic alumina templates. The effect of Ag layers on the chemical ordering of FePt was investigated. It is found that the ordering rate of FePt is enhanced by introducing Ag layers in the FePt nanowire during post-deposition annealing. Measurements of the structure and magnetic properties of FePt 5 nm/Ag 1 nm multilayered nanowires reveal that the disorder-order transformation temperature of FePt is lowered to 350 °C. The possible reason for the enhancement in the ordering of FePt by introducing the Ag layers in the FePt nanowire is discussed.  相似文献   

13.
A thermoresponsive poly(NIPAM-co-dye) copolymer with covalently attached D-π-A type dye was prepared by typical radical copolymerization. Software was used to calculate the electron density distribution of the push-pull, intramolecular charge transfer (ICT) operating in donor-π-conjugation-acceptor (D-π-A) configurations of dye monomer 3. It can be constructed an acid/base-induced molecular switch by modulation of intramolecular charge transfer with protonation/deprotonation. The lower critical solution temperature (LCST) behavior was investigated by means of UV-vis spectroscopy that allows the measurement of the phase transition from 25 to 40 °C in aqueous solution. The poly(NIPAM-co-dye) copolymer also exhibited color change when used an acid/base-induced molecular switch via control of intramolecular charge transfer (ICT). The morphology of the internal microstructure of the poly(NIPAM-co-dye) hydrogel was observed by scanning electron microscopy (SEM). The reversible switch could be obtained by thermal and acid/base stimuli.  相似文献   

14.
Ten layers of self-assembled InMnAs quantum dots with InGaAs barrier were grown on high resistivity (1 0 0) p-type GaAs substrates by molecular beam epitaxy (MBE). The presence of ferromagnetic structure was confirmed in the InMnAs diluted magnetic quantum dots. The ten layers of self-assembled InMnAs quantum dots were found to be semiconducting, and have ferromagnetic ordering with a Curie temperature, TC=80 K. It is likely that the ferromagnetic exchange coupling of sample with TC=80 K is hole mediated resulting in Mn substituting In and is due to the bound magnetic polarons co-existing in the system. PL emission spectra of InMnAs samples grown at temperature of 275, 260 and 240 °C show that the interband transition peak centered at 1.31 eV coming from the InMnAs quantum dot blueshifts because of the strong confinement effects with increasing growth temperature.  相似文献   

15.
Observations of vacancy clusters formed in Czochralski (Cz) Si after high energy ion implantation are reported. Vacancy clusters were created by 2 MeV Si ion implantation of 1 × 1015 ions/cm2 and after annealing between 600 and 650 °C. Doppler broadening measurements using a slow positron beam have been performed on the self-implanted Si samples, both as-implanted and after annealing between 200 and 700 °C for time intervals ranging from 15 to 120 min. No change in the S parameter was noted after the thermal treatment up to 500 °C. However, the divacancies (V2) created as a consequence of the implantation were found to start agglomerating at 600 °C, forming vacancy clusters in two distinct layers below the surface; the first layer is up to 0.5 μm and the second layer is up to 2 μm. The S-W plots of the data suggest that clusters of the size of hexavacancies (V6) could be formed in both layers after annealing for up to an hour at 600 °C or half an hour at 650 °C. After annealing for longer times, it is expected that vacancies are a mixture of V6 and V2, with V6 most probably dominating in the first layer. Further annealing for longer times or higher temperatures breaks up the vacancy clusters or anneals them away.  相似文献   

16.
The possibility of reducing the temperature of conventional wool dyeing with an acid levelling dye using ultrasound was studied in order to reach exhaustion values comparable to those obtained with the standard procedure at 98 °C, obtaining dyed samples of good quality. The aim was to develop a laboratory method that could be transferred at industrial level, reducing both the energy consumption and fiber damage caused by the prolonged exposure to high temperature without the use of polluting auxiliary agents.Dyeings of wool fabrics were carried out in the temperature range between 60 °C and 80 °C using either mechanical or ultrasound agitation of the bath and coupling the two methods to compare the results. For each dyeing, the exhaustion curves of the dye bath were determined and the better results of dyeing kinetics were obtained with ultrasound coupled with mechanical stirring. Hence the corresponding half dyeing times, absorption rate constants according to Cegarra-Puente modified equation and ultrasonic efficiency were calculated in comparison with mechanical stirring alone. In the presence of ultrasound the absorption rate constants increased by at least 50%, at each temperature, confirming the synergic effect of sonication on the dyeing kinetics. Moreover the apparent activation energies were also evaluated and the positive effect of ultrasound was ascribed to the pre-exponential factor of the Arrhenius equation. It was also shown that the effect of ultrasound at 60 °C was just on the dye bath, practically unaffecting the wool fiber surface, as confirmed by the results of SEM analysis.Finally, fastness tests to rubbing and domestic laundering yielded good values for samples dyed in ultrasound assisted process even at the lower temperature. These results suggest the possibility, thanks to the use of ultrasound, to obtain a well equalized dyeing on wool working yet at 60 °C, a temperature process strongly lower than 98 °C, currently used in industry, which damages the mechanical properties of the fibers.  相似文献   

17.
This paper presents a study on the line-width and wavelength stability of a single mode narrow line-width (≈ 100 MHz) dye laser pumped by a copper vapour laser, with and without precision temperature control of dye solution. The single mode dye laser system was based on a specially designed SS metal dye cell and grazing incidence grating (GIG) dye resonator with intra-cavity double prism beam expander and etalon. A high precision wavelength-meter was used to record the line-width and frequency stability data. With the coarse dye solution temperature control of 23 ± 2 °C, dye laser line-width varied in a periodic fashion (in every 30 s) between 100 and 770 MHz. Frequency stability was ± 215 MHz (1 min). This is attributed to switching from single to double mode due to temperature induced cavity length change. For the precise dye solution control of 23 ± 0.1 °C, the periodic variation of the line-width was removed completely and the line-width was always ≤ 100 MHz. The frequency stability also improved to ± 42 MHz (1 min). It is established that the dye temperature control is very crucial for achieving, highly frequency stable single axial mode operation.  相似文献   

18.
In this work, we have studied thermal stability of nanoscale Ag metallization and its contact with CoSi2 in heat-treated Ag(50 nm)/W(10 nm)/Co(10 nm)/Si(1 0 0) multilayer fabricated by sputtering method. To evaluate thermal stability of the systems, heat-treatment was performed from 300 to 900 °C in an N2 ambient for 30 min. All the samples were analyzed by four-point-probe sheet resistance measurement (Rs), Rutherford backscattering spectrometry (RBS), X-ray diffractometry (XRD), and atomic force microscopy (AFM). Based on our data analysis, no interdiffiusion, phase formation, and Rs variation was observed up to 500 °C in which the Ag layer showed a (1 1 1) preferred crystallographic orientation with a smooth surface and Rs of about 1 Ω/□. At 600 °C, a sharp increase of Rs value was occurred due to initiation of surface agglomeration, WSi2 formation, and interdiffusion between the layers. Using XRD spectra, CoSi2 formed at the Co/Si interface preventing W silicide formation at 750 and 800 °C. Meantime, RBS analysis showed that in this temperature range, the W acts as a cap layer, so that we have obtained a W encapsulated Ag/CoSi2 contact with a smooth surface. At 900 °C, the CoSi2 layer decomposed and the layers totally mixed. Therefore, we have shown that in Ag/W/Co/Si(1 0 0) multilayer, the Ag nano-layer is thermally stable up to 500 °C, and formation of W-capped Ag/CoSi2 contact with Rs of 2 Ω/□ has been occurred at 750-800 °C.  相似文献   

19.
CdSe thin films have been grown on GaAs (0 0 1) substrates by molecular beam epitaxy (MBE). The effects of substrate temperature and annealing treatment on the structural properties of CdSe layers were investigated. The growth rate slightly decreases due to the accelerated desorption of Cd from CdSe surface with an increase in the temperature. The sample grown at 260 °C shows a polycrystalline structure with rough surface. As the temperature increases over 300 °C, crystalline CdSe (0 0 1) epilayers with zinc-blende structure are achieved and the structural quality is improved remarkably. The epilayer grown at 340 °C displays the narrowest full-width at half-maximum (FWHM) from (0 0 4) reflection in double-crystal X-ray rocking curve (DCXRC) and the smallest root-mean-square (RMS) roughness of 0.816 nm. Additionally, samples fabricated at 320 °C were annealed in air for 30 min to study the films’ thermal stability. X-ray diffraction (XRD) results indicate that the zinc-blende structure remains unchanged when the annealing temperature is elevated to 460 °C, meaning a good thermal stability of the cubic CdSe epilayers.  相似文献   

20.
In the present paper we report structural and photoluminescence (PL) results from samples obtained by Si implantation into stoichiometric silicon nitride (Si3N4) films. The Si excess was introduced in the matrix by 170 keV Si implantation performed at different temperatures with a fluence of Φ=1×1017 Si/cm2. The annealing temperature was varied between 350 and 900 °C in order to form the Si precipitates. PL measurements, with a 488 nm Ar laser as an excitation source, show two superimposed broad PL bands centered around 760 and 900 nm. The maximum PL yield is achieved for the samples annealed at 475 °C. Transmission electron microscopy (TEM) measurements show the formation of amorphous nanoclusters and their evolution with the annealing temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号