首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the experimental observation of the effect of spontaneously generated coherence on absorption without the rigorous requirement of close-lying levels. The experiments are studied in both a four-level N-type and a four-level inverted-Y-type atomic system in a rubidium atomic beam. With the coupling and controlling field, the N-type system is equivalent to a system with three closely upper levels coupled to one lower level by the same vacuum modes. The quantum interference can induce two prominent and nearly transparent holes where the slope of the refractive index is very steep. This special situation could allow the simultaneous propagation of two weak pulses with different frequencies. When we tune the wavelength of the controlling field, the N-type system turns to be the inverted-Y atomic system. Under the two-photon resonance condition, the system is equivalent to a V-type system with two closely upper levels, and the interference can reduce one broad transparency window in the middle of the absorption spectrum. Besides we can control the number of the spontaneously decay channels by the detuning of the controlling field, thus the effect of spontaneously generated coherence can exist in three or two closely space levels.  相似文献   

2.
刘中波  梁颖  贾克宁  樊锡君 《中国物理 B》2012,21(2):24206-024206
In this paper we study influences of Doppler broadening, spontaneously generated coherence, and other system parameters on propagation effect in a quasi lambda-type four-level atomic system. It is shown that when the Doppler broadening is present, generally speaking, the values of gain and intensity of lasing without inversion (i.e. the probe field) in the co-propagating probe and driving fields case are much larger than those in the counter-propagating case; considerably larger gain and intensity of lasing without inversion than those without the Doppler broadening can be obtained by choosing appropriate values of the Doppler broadening width and spontaneously generated coherence strength. The gain and intensity of lasing without inversion increase with the increase of spontaneously generated coherence strength; when spontaneously generated coherence is present, much larger gain and intensity of lasing without inversion than those in the case without spontaneously generated coherence can be obtained. Choosing suitable values of the probe detuning, Rabi frequencies of the driving and pump fields at the entrance of the medium also can remarkably enhance the gain and intensity of lasing without inversion.  相似文献   

3.
卜凡阁  乔红霞  马慧  樊锡君 《光子学报》2008,37(10):2089-2093
利用具有自发辐射诱导相干开放四能级系统的定态数值解,从不同角度分析了探测场和驱动场之间的相对位相Φ对探测场增益(吸收)以及粒子数差的影响.研究结果表明:通过对相对位相的控制,可以实现探测场无反转增益和色散的周期性放大和减弱,并能得到无吸收高色散;Φ=α的色散曲线与Φ=α+π/2的增益曲线相似;在探测场共振条件下,适当调节相对位相,可以使无反转激光(LWI)增益达到最大.还研究了粒子注入和退出速率的变化对位相相关的LWI增益的调制作用.  相似文献   

4.
张冰  刘志学  徐万超 《物理学报》2013,62(16):164207-164207
提出了一个由两个弱探测场和两个强耦合场驱动的四能级双V型原子系统, 研究发现在四波混频共振条件下, 两探测场均可被放大而无须粒子数反转. 值得注意的是, 由于所选择的激发态为超精细结构的两个近能级, 这里必须考虑自发辐射相干效应的影响. 与不考虑自发辐射相干相比, 同样参数条件下探测场的增益得到大幅度提高.而且, 探测场增益对相位非常敏感, 即增益-吸收线型受相位周期性调制, 同时也受两个偶极矩之间夹角θ制约. 此外还分析了相干抽运场 (强耦合场)的失谐对增益谱线产生的影响. 关键词: 无粒子数反转激光 四波混频 自发辐射相干  相似文献   

5.
Y and inverted Y-type four-level schemes for optical quantum coherence systems, which may be intuitively considered to be very simple, have not been studied intensively till now. In this paper, we present the multiformity of these two types of schemes by considering that they can be classified into nine possible level styles as the second-order sub-schemes using laser fields. Further we point out the complexity of their more than one hundred realistic configurations as the third-order four-level sub-schemes that may appear in the optical quantum coherence experiments. Throughout this paper we review which configurations have been studied in some research aspects and which ones not, according to our knowledge, in order to be propitious to next steps of theoretical and experimental investigations, especially for applications in the fields of quantum optics, quantum information science, laser spectroscopy, and so on.  相似文献   

6.
刘云  王朴  彭双艳 《中国物理 B》2013,(10):287-291
In this paper, we suggest a doubly degenerate four-level system, in which the transition takes place between the hyperfine energy 52S1/2 F = 1 and 52P3/2 F = 2 in rubidium 87 D2 line, for studying atomic phase grating based on the cross-Kerr and phase conjugation effects. The phase grating with high efficiency can be obtained by tuning phase shift Ф between the coupling and probe field, when the coupling intensity is much stronger than the strength of probe field. Under different coupling intensities, a high diffraction efficiency can be maintained. A new and simple way of implementing phase grating is presented. However, in such an atomic system, two main limitations must be taken into account. First, the independence between steady state probe susceptibility and the coupling intensity, when the population decay rate is larger than the Rabi frequency of the coupling field, cannot result in diffraction grating; second, the sample to be prepared should not be too long.  相似文献   

7.
We investigate the optical bistability (OB) and optical multi-stability (OM) in a four-level N-type atomic system. The effect of spontaneously generated coherence (SGC) on OB and OM is then discussed. It is found that SGC makes the medium phase dependent, so the optical bistability and multi-stability threshold can be controlled via relative phase between applied fields. We realize that the frequency detuning of probe and coupling fields with the corresponding atomic transition plays an important role in creation OB and OM. Moreover, the effect of laser coupling fields and an incoherent pumping field on reduction of OB and OM threshold is then discussed.  相似文献   

8.
We investigate the effects of spontaneously generated coherence (SGC) on both the steady and transient gain properties in a four-level inverted-Y-type atomic system in the presence of a weak probe, two strong coherent fields, and an incoherent pump. For the steady process, we find that the inversionless gain mainly origins from SGC. In particular, we can modulate the inversionless gain by changing the relative phase between the two fields. Moreover, the amplitude of the gain peak can be enhanced and the additional gain peak can appear by changing the detuning of the coupling field. As for the transient process, the transient gain properties can also be dramatically affected by the SGC. Compared to the case without SGC, the transient gain can be greatly enhanced with completely eliminated transient absorption by choosing the proper relative phase between the two fields. And the inverted-Y-type system with SGC can be simulated in both atomic and semiconductor quantum well systems avoiding the conditions of SGC.  相似文献   

9.
The effects from quantum coherence via decays and incoherent pumping on the lasing without inversion(LWI) are investigated in a four-level system.By analyzing the transient and steady-state behaviors of the absorption,we find that the gain occurs when both spontaneously generated coherence(SGC) and coherence induced by incoherent pumping(IPC) are considered.We attribute the occurrence of the gain to the interaction of quantum coherence via decays and incoherent pumping.  相似文献   

10.
We investigate the amplification mechanism in a four-level system by both the density-matrix and quantum-jump approaches. We show that the asymmetry between three-photon stimulated emission and one-photon absorption process is responsible for the inversionless amplification of the probe field. We also investigate the effects of spontaneously generated coherence (SGC) on the probe gain, and find that due to the SGC, the probe gain can be greatly enhanced and can be modulated by changing the relative phase between the applied fields.  相似文献   

11.
A four-level N-type atomic medium is considered to study the effect of spontaneous generated coherence (SGC) and Kerr nonlinearity on light pulse propagation. A light pulse is propagating inside the medium where each atom follows four-level N-type atom-field configuration of rubidium (85Rb) atom. The atom-field interaction leads to electromagnetically induced transparency (EIT) process. The atom-field interaction is accompanied by normal dispersion and in the presence of SGC and Kerr nonlinearity the dispersion property of the proposed atomic medium is modified, which leads to enhancement of positive group index of the medium. The enhancement of positive group index then leads to slow group velocity inside the medium. A more slow group velocity is also investigated by incorporated the collective effect of SGC and Kerr nonlinearity. The control of group velocity inside a four-level N-type atomic medium via collective effect of SGC and Kerr nonlinearity is the major part of this work.  相似文献   

12.
A theoretical investigation is carried out into the effect of spontaneously generated coherence (SGC) on Kerr nonlinearity of a four-level N-type system. It’s found that the Kerr nonlinearity can be obviously enhanced with SGC present. We attribute the enhancement of Kerr nonlinearity mainly to the generation of extra coherences induced by the superposition of the two SGC channels, and when the superposition is controlled by the interference between two SGC channels properly, the maximal Kerr nonlinearity does not only enter the electromagnetically induced transparency window as the spontaneous generated coherences intensify, but also gets enhanced about 10 times with very large SGC coefficients than that with no SGC effect.  相似文献   

13.
A four-level N-type atomic medium is considered to study the effect of spontaneous generated coherence(SGC) and Kerr nonlinearity on light pulse propagation. A light pulse is propagating inside the medium where each atom follows four-level N-type atom-field configuration of rubidium(85Rb) atom. The atom-field interaction leads to electromagnetically induced transparency(EIT) process. The atom-field interaction is accompanied by normal dispersion and in the presence of SGC and Kerr nonlinearity the dispersion property of the proposed atomic medium is modified,which leads to enhancement of positive group index of the medium. The enhancement of positive group index then leads to slow group velocity inside the medium. A more slow group velocity is also investigated by incorporated the collective effect of SGC and Kerr nonlinearity. The control of group velocity inside a four-level N-type atomic medium via collective effect of SGC and Kerr nonlinearity is the major part of this work.  相似文献   

14.
The control role of the relative phase between the probe and driving fields on the gain and dispersion in an open three-level ladder atomic system with incoherent pumping and spontaneously generated coherence is investigated. It is shown that by adjusting the value of the relative phase, the switching from lasing with inversion to lasing without inversion (LWI) can be realized; high index of the refraction with zero absorption can be achieved. It is also found that when the driving field is on resonance, the dispersion curve versus the probe detuning is very similar to the gain curve if the relative phase corresponding to the dispersion advances π/2 than that corresponding to the gain. LWI gain from the open system is obviously larger than that from corresponding closed system. When the incoherent pumping is absent, the open system can get LWI gain, moreover the gain is larger than that when the incoherent pumping presents for suitable value of the relative phase, but the corresponding closed system exhibits only absorption. In addition, manipulation effects of atomic exit and ratio of the injection rates on phase dependent gain are also analyzed.  相似文献   

15.
The propagation of a weak probe field in a four-level N-type quantum system in the presence of spontaneously generated coherence(SGC) is theoretically investigated. The optical properties of the system are studied and it is shown that the group velocity of light pulse can be controlled by relative phase of applied fields. By changing the relative phase of applied fields, the group velocity of light pulse changes from transparent subluminal to the transparent superluminal light propagation. Thus, the phase-controlled absorption-free superluminal light propagation is obtained without applying an incoherent laser fields to the system. The propagation of a weak probe light pulse is studied by solving the Maxwell's wave equation on numerical grid in space and time. Moreover, we study the third order self- and cross-Kerr susceptibility of probe field and calculate the nonlinear cross-phase shift for different values of intensity of applied fields. In addition, we take into account the effect of Doppler broadening on the light pulse propagation and it is found that a suitable choice of laser propagation directions allows us to preserve our results even in the presence of Doppler effect. It is demonstrated that by increasing the Doppler width of distribution to the room temperature,the dispersion changes from transparent subluminal to transparent superluminal light propagation which is our major motivation for this work.  相似文献   

16.
刘中波  贾克宁  梁颖  仝殿民  樊锡君 《中国物理 B》2012,21(6):64208-064208
It is shown that in a Doppler broadened open N-type four-level atomic system with spontaneously generated coherence (SGC), the gain without inversion (GWI) is very sensitive to the variation of the relative phase between the probe field and the driving field; the atomic exit rate (R0) and the ratio (S) of the atomic injection rates have a considerable modulation effect on the phase-dependent GWI. GWI first increases and then decreases with R0 increasing; in a certain value range of S, GWI increases monotonically with S increasing; by adjusting the values of R0 and S, in an open system a much larger GWI can be obtained than in the corresponding closed system [2011 Phys. Rev. A 83 043805]. The modulation effects of R0 and S on the phase-dependent GWI in the case with the counter-propagating probe and driving fields are stronger than those in the co-propagating case, GWI in the co-propagating case is much larger than that in the counter-propagating case.  相似文献   

17.
Limin Fang  Jie Gao 《Optik》2013,124(24):6539-6544
The coherent superposition of two-atomic levels induced by coherent population trapping is employed in the two-level system, the standard three-level Λ type scheme and the four-level N-type systems and a weak probe pulse scans across the system. A theoretical analysis about the response of medium to the probe field is given. It is shown that under different initial conditions, the coherent superposition of the dark state exhibits abundant optical phenomena response to the probe field. It can change the absorption or gain and the dispersion relationship in the medium experienced by the probe. In the embedded three-level scheme, the probe experiences a crossover from absorption to transparent and then to amplification. Consequently the group velocity of the probe pulse can be controlled to propagate either as a subluminal, a standard, a superluminal or even a negative speed. In the embedded four-level N-type system, it can give an enhancement to the Giant Kerr effect and overcome the limitation of two-photon absorption, then make the nonlinear properties of the medium richer than the traditional N-type scheme.  相似文献   

18.
二价铕离子(Eu2 )在KMgF3晶体中产生窄带线状发射,峰值位于360 nm.依据自身建立的激发态能量损耗模型,预测了4f7(6P7/2)→4f7(8S7/2)跃迁实现受激发射的可能性.采用ASE技术测得了KMgF3:Eu2 晶体360 nm发射的光学增益,得到净光学增益系数g=(11.4±3.2)cm-1,实验证实了理论预测.晶体退火或掺杂敏化离子Gd3 或Ce3 可以改善Eu2 的增益效果.  相似文献   

19.
精确求解了单模光场与N型四能级原子相互作用系统的波函数,并采用数 值计算方法,分析了原子布居的时间演化特性.N型四能级原子相当于具有双层精细结构的二能 级原子,在一定的条件下四能级系统可退化为V型或Λ型三能级系统或简单二能级系统.计 算结果表明,四能级系统原子粒子数布居的时间演化不具有周期性.  相似文献   

20.
刘中波  樊锡君 《计算物理》2012,29(6):881-890
利用数值计算详细研究具有真空诱导相干的准Λ型四能级原子系统中探测场和驱动场之间的相对位相(Φ)对传播效应的影响。结果表明:通过选择Φ的取值可以获得更大的GWI和更长的存在无反转增益的传播距离,从而获得更高的LWI强度;Doppler展宽存在时,Doppler展宽宽度及探测场和驱动场传播方向对位相相关的GWI和LWI强度的空间演化有明显的调制作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号