首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
2.
X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) have been used to investigate the effect of reactive ion etching (RIE) on poly(methylhydrogensiloxane-co-dimethylsiloxane) surface in fluorine-based plasmas. Polysiloxane layers supported on the standard silicon wafers were etched using SF6 + O2 or CF4 + O2 plasmas. SEM studies show that the polysiloxane morphology depends on plasma chemical composition strongly. Presence of a columnar layer likely covered with a fluorine rich compound was found on the elastomer surface after the CF4 + O2 plasma exposure. After the SF6 + O2 or CF4 + O2 plasma treatment the polysiloxane surface enriches with fluorine or with fluorine and aluminum, respectively. Different morphologies and surface chemical compositions of the silicone elastomer etched in both plasmas indicate different etching mechanisms.  相似文献   

3.
A 10 mm thickness columned CaCu3Ti4O12 ceramic was fabricated by the conventional solid-state reaction method and the dielectric properties of different parts in ceramic had been investigated. For the sample close to the surface, only one Debye-type relaxation around 107 Hz was observed at room temperature. However, for the sample close to the core, another relaxation peak was observed at about 104 Hz. The results were explained in terms of the equivalent circuit model by showing in the impedance spectroscopy. Moreover, it was introduced that the low-frequency dielectric relaxation is associated with the electrode-sample contact effect based on varying sample thickness and an annealing treatment in the nitrogen atmospheres.  相似文献   

4.
Surface effects during plasma activation of poly(p-phenilene sulphide)—PPS have been studied. Samples that were exposed to weakly ionized highly dissociated oxygen plasma created an inductively coupled radiofrequency discharge with the power of 100 W. The electron density and temperature were measured with a double Langmuir probe and were 4 × 1015 m−3 and 3 eV, respectively, while the neutral atom density was measured with a fiber optics catalytic probe and was 4 × 1021 m−3. The surface tension was determined by measuring the contact angle of deionized water, while the appearance of surface functional groups was detected by XPS. The surface tension of untreated PPS was 7 × 10−3 N/m or/and increased to 7 × 10−2 N/m in few seconds of plasma treatment. It remained fairly constant for longer plasma treatments. The XPS survey spectrum showed little oxygen on untreated samples, but its concentration increased to about 20 at.% in few seconds. Detailed high resolution XPS C 1s peak showed that the carbon was left fairly stable during plasma treatment. The main functional groups formed were rather sulphate in sulphite groups, as determined from high resolution S 2p peak. Namely, a strong transition from sulphide to sulphate state of sulfur was observed. The spontaneous deactivation of the polymer surface was measured as well. The deactivation was fairly logarithmic with the characteristic decay time of several hours.  相似文献   

5.
We report the laser-induced voltage (LIV) effects in c-axis oriented Bi2Sr2Co2Oy thin films grown on (0 0 1) LaAlO3 substrates with the title angle α of 0°, 3°, 5° and 10° by a simple chemical solution deposition method. A large open-circuit voltage with the sensitivity of 300 mV/mJ is observed for the film on 10° tilting LaAlO3 under a 308 nm irradiation with the pulse duration of 25 ns. When the film surface is irradiated by a 355 nm pulsed laser of 25 ps duration, a fast response with the rise time of 700 ps and the full width at half maximum of 1.5 ns is achieved. In addition, the experimental results reveal that the amplitude of the voltage signal is approximately proportional to sin 2α and the signal polarity is reversed when the film is irradiated from the substrate side rather than the film side, which suggests the LIV effects in Bi2Sr2Co2Oy thin films originate from the anisotropic Seebeck coefficient of this material.  相似文献   

6.
We have compared the photovoltaic charging of the (1 0 0) surface termination for Cu doped and undoped Li2B4O7. While the surface charging at the (1 0 0) surface of Li2B4O7 is significantly greater than observed at (1 1 0) surface, the Cu doping plays a role in reducing the surface photovoltage effects. With Cu doping of Li2B4O7, the surface photovoltaic charging is much diminished at the (1 0 0) surface. The density of states observed with combined photoemission and inverse photoemission remains similar to that observed for the undoped material, except in the vicinity of the conduction band edge.  相似文献   

7.
Glasses with compositions 41CaO(52 − x)SiO24P2O5·xFe2O33Na2O (2 ≤ x ≤ 10 mol.%) were prepared by melt quenching method. Bioactivity of the different glass compositions was studied in vitro by treating them with simulated body fluid (SBF). The glasses treated for various time periods in SBF were evaluated by examining apatite formation on their surface using grazing incidence X-ray diffraction, Fourier transform infrared reflection spectroscopy, scanning electron microscopy and energy dispersive spectroscopy techniques. Increase in bioactivity with increasing iron oxide content was observed. The results have been used to understand the evolution of the apatite surface layer as a function of immersion time in SBF and glass composition.  相似文献   

8.
In this study, we investigated the surface properties of diamond-like carbon (DLC) films for biomedical applications through plasma etching treatment using oxygen (O2) and hydrogen (H2) gas. The synthesis and post-plasma etching treatment of DLC films were carried out by 13.56 MHz RF plasma enhanced chemical vapor deposition (PECVD) system. In order to characterize the surface of DLC films, they were etched to a thickness of approximately 100 nm and were compared with an as-deposited DLC film. We obtained the optimum condition through power variation, at which the etching rate by H2 and O2 was 30 and 80 nm/min, respectively. The structural and chemical properties of these thin films after the plasma etching treatment were evaluated by Raman and Fourier transform infrared (FT-IR) spectroscopy. In the case of as-deposited and H2 plasma etching-treated DLC film, the contact angle was 86.4° and 83.7°, respectively, whereas it was reduced to 35.5° in the etching-treated DLC film in O2 plasma. The surface roughness of plasma etching-treated DLC with H2 or O2 was maintained smooth at 0.1 nm. These results indicated that the surface of the etching-treated DLC film in O2 plasma was hydrophilic as well as smooth.  相似文献   

9.
Detailed investigations into the dielectric dispersion phenomenon in the giant dielectric constant material CaCu3Ti4O12 (CCTO) around room temperature revealed the existence of two successive dielectric relaxations. In the temperature domain, a new dielectric relaxation was clearly observed around 250 K, in addition to the well-investigated dielectric relaxation close to 100 K. The effect of sintering and doping (La3+) on the strength of these dielectric relaxations were studied in detail. The sintering temperature as well as its duration was found to have tremendous influence on the dielectric relaxation that was encountered around 250 K. This Maxwell-Wagner (M-W) type of relaxation was found to be originating from the surface layer containing the Cu-rich phase, which was ascribed to the difference in the oxygen content between the surface and the interior of the sample. Interestingly, this particular additional relaxation was not observed in La2/3Cu3Ti4O12, a low dielectric constant member of the CCTO family, in which the segregation of Cu-rich phase on the surface was absent. Indeed the correlation between the new relaxation and the presence of Cu-rich phase in CCTO ceramics was further corroborated by the absence of the same after removing the top and bottom layers.  相似文献   

10.
Sulfur-termination was formed on the Ge(1 0 0) surface using (NH4)2S solution. Formation of Ge-S and the oxidation of the S-terminated Ge surface were monitored with multiple internal reflection Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. In the 0.5, 5, or 20% (NH4)2S solution, H-termination on the Ge(1 0 0) surface was substituted with S-termination in 1 min. When the S-terminated Ge(1 0 0) surface was exposed in air ambient, the oxidation was retarded for about 3600 min. The preservation time of the oxide layer up to one monolayer of S-terminated Ge(1 0 0) surface was about 120 times longer than for the H-terminated Ge(1 0 0) surface. However, the oxidation of S-terminated Ge(1 0 0) surface drastically increased after the threshold time. There was no significant difference in threshold time between S-terminations formed in 0.5, 5, and 20% (NH4)2S solutions. With the surface oxidation, desorption of S on the Ge surface was observed. The desorption behavior of sulfur on the S-terminated Ge(1 0 0) surface was independent of the concentration of the (NH4)2S solution that forms S-termination. Non-ideal S-termination on Ge surfaces may be related to drastic oxidation of the Ge surface. Finally, with the desulfurization on the S-terminated Ge(1 0 0) surface, oxide growth is accelerated.  相似文献   

11.
Porous surface-fluorinated TiO2 (F-TiO2) films were prepared through PEG modified sol-gel method and surface fluorination. The as-prepared films were characterized with XRD, FTIR, AFM, XPS and UV-vis DRS. The effects of surface fluorination on the photocatalytic activity and hydrophilicity of porous TiO2 film were studied by photocatalytic degradation of rhodamine B (RhB) as well as water contact angle (CA) on porous TiO2 film. The results showed that the surface fluorination increased the adsorption of RhB on the porous TiO2 film and enhanced the photocatalytic degradation of RhB. The concentration and pH of NaF solutions affected much the photocatalytic activity of porous TiO2 film. Porous F-TiO2 film prepared in 40 mM NaF solution at pH 4.0 showed the highest photocatalytic activity. Because of its porous structure, the porous F-TiO2 film had original water CA of 22.7°, which is much smaller than that of normal F-TiO2 film. Under UV light irradiation, the water CA of porous F-TiO2 film decreased to 5.1° in 90 min.  相似文献   

12.
Hydrophobic properties are of interest in fabric and textile manufacture. We have used radio-frequency inductively coupled SF6plasma to modify the surface of Thai silk fabrics for the enhancement of the hydrophobic property. The water contact angle of fabrics increased from 0°up to 145°after SF6 plasma treatment. The measured water absorption time was found to depend upon the treatment time and RF power, for SF6 pressures lower than 0.05 Torr. At higher SF6 pressures, all samples achieved absorption times in excess of 200 min, regardless of the treatment time and RF power. The morphology changes of fabrics after plasma treatment were characterized by scanning electron microscopy and atomic force microscopy. After plasma treatment, the RMS surface roughness of the fibres increased from about 10 to 30 nm. From X-ray photoelectron microscopy analysis, we found that the hydrophobicity of the fabrics is the highest when the fluorine/carbon ratio at the surface increases. A small decrease of the oxygen/carbon ratio was also observed on the fabrics that showed the longest absorption times.  相似文献   

13.
In this paper, the effect of microstructural and surface morphological developments on the soft magnetic properties and giant magneto-impedance (GMI) effect of Fe73.5−xCrxSi13.5B9Nb3Au1 (x=1, 2, 3, 4, 5) alloys was investigated. It was found that the Cr addition causes slight decrease in the mean grain size of α-Fe(Si) grains. AFM results indicated a large variation of surface morphology of density and size of protrusions along the ribbon plane due to structural changes caused by thermal treatments with increasing Cr content. Ultrasoft magnetic properties such as the increase of magnetic permeability and the decrease of coercivity were observed in the samples annealed at 540 °C for 30 min. Accordingly, the GMI effect was also observed in the annealed samples.  相似文献   

14.
Stainless steel wafers were treated with the glow discharge plasma of mixed N2O and O2 at different molar ratios at a certain discharge condition to create desirable biological characteristics to the surfaces. It was found that the molar ratio of N2O to O2 in the mixture at 1:1 used for plasma surface modification caused high apoptotic percentage. Contact angle measurement showed that the surface of stainless steel samples became very hydrophilic after the plasma modification with a value of 15°-30°. The control stainless steel chips without plasma treatment had a contact angle of 40 ± 2°. The data of Electron Spectroscopy for Chemical Analysis (ESCA) indicated that there was a certain amount of oxynitrites formed on the plasma treated surfaces, which was considered to play an important role to cell apoptosis and anti-clot formation in cell culture tests. The ESCA depth profile of up to 250 Å from the top surface showed the change of elemental compositions within 40-50 Å of the surface by the plasma treatment. The decreased platelet attachment, combined with increased apoptosis in fibroblasts is a distinct combination of biological responses arising from the mixed gas plasma treatment. These initial results suggest it may be of particular use relative to stainless steel stents where decreased platelet attachments are advantageous and induction of apoptosis could limit in-stent restenosis.  相似文献   

15.
The influence of He/O2 atmospheric pressure plasma jet (APPJ) treatment on subsequent wet desizing of polyacrylate on PET fabrics was studied in the present paper. Weight loss results indicated that the weight loss increased with an increase of plasma treatment time. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) showed an increased surface roughness after the plasma treatment. SEM also showed that the fiber surfaces were as clean as unsized fibers after 35 s treatment followed by NaHCO3 desizing. X-ray photoelectron spectroscopy (XPS) analysis indicated that oxygen-based functional groups increased for the plasma treated polyacrylate sized fabrics. The percent desizing ratio (PDR) results showed that more than 99% PDR was achieved after 65 s plasma treatment followed by a 5 min NaHCO3 desizing. Compared to conventional wet desizing, indicating that plasma treatment could significantly reduce desizing time.  相似文献   

16.
The effect of bromine methanol (BM) etching and NH4F/H2O2 passivation on the Schottky barrier height between Au contact and semi-insulated (SI) p-Cd1−xZnxTe (x ≈ 0.09-0.18) was studied through current-voltage (I-V) and capacitance-voltage (C-V) measurements. Near-infrared (NIR) spectroscopy technique was utilized to determine the Zn concentration. X-ray photoelectron spectroscopy (XPS) for surface composition analysis showed that BM etched sample surface left a Te0-rich layer, however, which was oxidized to TeO2 and the surface [Te]/([Cd] + [Zn]) ratio restored near-stoichiometry after NH4F/H2O2 passivation. According to I-V measurement, barrier height was 0.80 ± 0.02-0.85 ± 0.02 eV for Au/p-Cd1−xZnxTe with BM etching, however, it increased to 0.89 ± 0.02-0.93 ± 0.02 eV with NH4F/H2O2 passivation. Correspondingly, it was about 1.34 ± 0.02-1.43 ± 0.02 eV and 1.41 ± 0.02-1.51 ± 0.02 eV by C-V method.  相似文献   

17.
18Ni-maraging steel has been entirely nanocrystallized by a series of processes including solution treatment, hot-rolling deformation, cold-drawn deformation and direct electric heating. The plasma nitriding of nanocrystallized 18Ni-maraging steel was carried out at 410 °C for 3 h and 6 h in a mixture gas of 20% N2 + 80% H2 with a pressure of 400 Pa. The surface phase constructions and nitrogen concentration profile in surface layer were analyzed using an X-ray diffractometer (XRD) and the glow discharge spectrometry (GDS), respectively. The results show that an about 2 μm thick compound layer (mono-phase γ′-Fe4N) can be produced on the top of the surface layer of nanocrystallized 18Ni-maraging steel plasma nitrided at 410 °C for 6 h. The measured hardness value of the nitrided surface is 11.6 GPa. More importantly, the γ′-Fe4N phase has better plasticity, i.e., its plastic deformation energy calculated from the load-displacement curve obtained by nano-indentation tester is close to that of nanocrystallized 18Ni-maraging steel. Additionally, the mechanical properties of γ′-Fe4N phase were also characterized by first-principles calculations. The calculated results indicate that the hardness value and the ratio of bulk to shear modulus (B/G) of the γ′-Fe4N phase are 10.15 GPa and 3.12 (>1.75), respectively. This demonstrates that the γ′-Fe4N phase has higher hardness and better ductility.  相似文献   

18.
Phase transition from anatase to rutile for the 70 nm TiO2 crystallite has been investigated by the time differential perturbed angular correlation (TDPAC) technique. The study involved the annealing of the TiO2 nanocrystals, adsorbed with the nuclear probe (181Hf/181Ta) at trace level, at different temperatures for different durations. The TDPAC measurement was also supported by XRD measurement where the width of the peaks increases with the increase in annealing temperature indicating a crystal growth. The samples annealed up to 823 K for 4 h showed no phase transition, except for the growth of the crystallites. However, it showed phase transition at the same temperature (823 K), when annealed for longer duration, indicating the slower kinetics of the phase transition process. Further the sample, when annealed at 1123 K for 4 h, showed phase transition. It has also been observed that the 181Hf tracer, adsorbed on 70 nm anatase TiO2, diffuses from surface to bulk during the phase transition process and the extent of diffusion in anatase differs from that in rutile phase. However, surface to bulk mass-transfer is found to play a significant role in the phase transition process.  相似文献   

19.
CdIn2O4 thin films were prepared by direct-current (DC) reactive magnetron sputtering. The structure, surface morphology and the chemical composition of the thin films were analyzed by X-ray diffraction (XRD), atomic force microscope (AFM) and X-ray photoelectron spectroscopy (XPS), respectively. The electrical properties of the films prepared in different oxygen concentration and annealing treatment were determined, and the effects of the preparing conditions on the structure and electrical properties were also explored. It indicates that the CdIn2O4 thin films with uniform and dense surface morphology contain mainly CdIn2O4, In2O3 phases, and CdO phase is also observed. The XPS analysis confirms the films are in oxygen-deficient state. The electrical properties of these films significantly depend on the preparing conditions, the resistivity of the films with the oxygen concentration of 4.29% is 2.95 × 10−4 Ω cm and the Hall mobility is as high as 60.32 cm2/V s. Annealing treatment can improve the electrical performance of the films.  相似文献   

20.
For further prolonging the serve life of silicone rubber (SIR) for outdoor insulation and increasing its resistance of pollution flashover, surface modifications of SIR were carried out via CF4 capacitively coupled plasma at radio frequency (RF) power of 60, 100 and 200 W for a treatment time up to 20 min under CF4 flow rate of 20 sccm. Static contact angle measurement was employed to estimate the change of hydrophobicity of the modified SIR. The variation of the surface functional groups of the modified SIR was observed by attenuated total reflection Fourier transform infrared (ATR-FTIR) spectrum and X-ray photoelectron spectroscopy (XPS). The surface topography was observed by atom force microscopy (AFM). The results indicate that the static contact angle of SIR surface is improved from 100.7° to 150.2° via the CF4 plasma modification, and the super-hydrophobic surface of modified SIR, which corresponds to a static contact angle of 150.2°, appears at RF power of 200 W for a 5-min treatment time. According to the results, it is suggested that the formation of super-hydrophobic surface is ascribed to the co-action of the increase of roughness created by the ablation reaction of CF4 plasma and the formation of [SiFx(CH3)2−xO]n (x = 1, 2) structure produced by the direct attachment of F atoms to Si.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号