首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Self-assembled monolayers (SAMs) of n-dodecanethiol (C12H25SH) and n-dodecaneselenol (C12H25SeH) on polycrystalline copper have been elaborated with the purpose of achieving densely packed and crystalline-like assemblies. By combining the surface sensitivity of polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) and sum-frequency generation spectroscopy (SFG), the effect of the self-assembly time (15 min, 30 min, 1 h, 2 h and 24 h) on the formation of n-dodecanethiol and n-dodecaneselenol monolayers on untreated and electrochemically reduced polycrystalline copper has been investigated. On electrochemically reduced copper, PM-IRRAS spectroscopy shows that both molecules are able to form well organized layers. SFG spectroscopy indicates that the C12H25SeH SAMs are slightly better ordered than those achieved with C12H25SH. On untreated copper, the two molecules lead to different film organizations. Both PM-IRRAS and SFG indicate that C12H25SH SAMs are of the same film quality as those obtained on electrochemically reduced copper. On the contrary, C12H25SeH monolayers are invariably poorly organized at the molecular level.  相似文献   

2.
By patterning a self-assembled monolayer (SAM) of thiolated molecules with opposing dipole moments on a gold anode of a polymer light-emitting diode (PLED), the charge injection and, therefore, the light-emission of the device can be controlled with a micrometer-scale resolution. Gold surfaces were modified with SAMs based on alkanethiols and perfluorinated alkanethiols, applied by microcontact printing, and their work functions have been measured. The molecules form a chemisorbed monolayer of only ∼1.5 nm on the gold surface, thereby locally changing the work function of the metal. Kelvin probe measurements show that the local work function can be tuned from 4.3 to 5.5 eV, which implies that this anode can be used as a hole blocking electrode or as a hole injecting electrode, respectively, in PLEDs based on poly(p-phenylene vinylene) (PPV) derivatives. By microcontact printing of SAMs with opposing dipole moments, the work function was locally modified and the charge injection in the PLED could be controlled down to the micrometer length scale. Consequently, the local light-emission exhibits a high contrast. Microcontact printing of SAMs is a simple and inexpensive method to pattern, with micrometer resolution, the light-emission for low-end applications like static displays. Both authors (J.J. Brondijk and X. Li) contributed equally.  相似文献   

3.
n-Dodecanethiol (RSH) and n-dodecaneselenol (RSeH) molecules have been self-assembled on electrochemically reduced copper sheets. To assess the stability of the resulting monolayers, immersion, during different times varying from minutes to hours, of the modified copper in a solution which contains the competitor molecule has been performed. PM-IRRAS shows a good organisation for all monolayers without any divergence. Based on XPS analysis, we have proved an intercalation process of RSeH molecules followed by adsorption on the free sites of copper modified with the RSH and in similar way the insertion and adsorption of RSH molecules in the RSeH modified copper. The only difference between the two directions is in the kinetics which seems to be faster for thiol compared to selenol.  相似文献   

4.
Self-assembled monolayers (SAMs) of alkanethiols are major building blocks for nanotechnology. SAMs provide a functional interface between electrodes and biomolecules, which makes them attractive for biochip fabrication. Although gold has emerged as a standard, copper has several advantages, such as compatibility with semiconductors. However, as copper is easily oxidized in air, patterning SAMs on copper is a challenging task. In this work we demonstrate that submerged laser ablation (SLAB) is well-suited for this purpose, as thiols are exchanged in-situ, avoiding air exposition. Using different types of ω-substituted alkanethiols we show that alkanethiol SAMs on copper surfaces can be patterned using SLAB. The resulting patterns were analyzed by atomic force microscopy (AFM) and scanning electron microscopy (SEM). Both methods indicate that the intense laser beam promotes the exchange of thiols at the copper surface. Furthermore, we present a procedure for the production of free-standing copper nanomembranes, oxidation-protected by alkanethiol SAMs. Incubation of copper-coated mica in alkanethiol solutions leads to SAM formation on both surfaces of the copper film due to intercalation of the organic molecules. Corrosion-protected copper nanomembranes were floated onto water, transferred to electron microscopy grids, and subsequently analyzed by electron energy loss spectroscopy (EELS).  相似文献   

5.
Recent studies show that the self-assembled monolayer (SAM) is well suited to control the selectivity of chemical vapor deposition (CVD). Here, we reported the selective CVD for copper on the functionalized SAM surfaces (with -SH, -SS-, and -SO3H terminal groups). The -SS- and -SO3H terminal group surfaces were obtained through in situ chemical transformation of -SH terminal group surface of a 3-mercaptopropyltrimethoxysilane-SAM (MPTMS-SAM). As a result, the -SS- terminal group surface reduces copper deposition and the -SO3H terminal group surface enhances copper deposition comparing to the -SH terminal group surface. In addition, the MPTMS-SAM was irradiated by UV-light through a photo mask to prepare SH-group and OH-group regions. Then, copper films were deposited only on the SH-group region of the substrate in chemical vapor deposition. Finally, patterns of copper films were formed in the way of UV-light irradiation. These results are expected for use of selective deposition of copper metallization patterns in IC manufacturing processes.  相似文献   

6.
Formation of Cu-doped SiOxCy nanostructures has been studied by using hexamethyldisiloxane (HMDSO)/H2/Ar radio frequency (RF) plasma, where a copper tube was utilized as power electrode to generate plasma jet. Tree-like nanostructures were obtained at low concentration of HMDSO. One can find the initial vertical growth of nanowires (NWs) and the spherical structures on sidewalls of the bended NWs, which were attributed to the vertical gas flow and secondary catalyzing due to copper from the ambience, respectively. However, the fragments with big mass were too many to synthesize nanostructure at high concentration of HMDSO. More Cu particles were transported to the substrate while an RF bias was applied to the substrate, which restrained the NWs growth catalyzed by Au and resulted in the formation of acaleph-like nanostructures.  相似文献   

7.
We synthesized hybrid self-assembled monolayer (SAM) with short chain hydrophobic and hydrophilic groups on the same molecule. The physical characteristics such as surface roughness and surface energy of the synthesized hybrid SAM were compared with mono SAMs of amine, octyl and mixed amine-octyl SAM. We also compared the response of the surfaces towards adsorption of bovine serum albumin (BSA) using quartz crystal microbalance (QCM). We determined adsorbed amount (Γ) of BSA on the various surfaces from its various bulk concentrations. It follows the Langmuir adsorption isotherm in the concentration range of our study. The strength of adsorbed protein was characterized from the dissipation factor (ΔD). The highest ΔD value of adsorbed BSA was observed for the adsorption on hybrid surface. The arrangement of BSA on hybrid surface such that it leaded to soft layer, corresponded to the highest ΔD value. These findings suggest that the hybrid surface is a potential surface modifying agent of biomaterials.  相似文献   

8.
We report on the formation of ordered self-assembled monolayers (SAMs) of single-stranded peptide nucleic acids (ssPNA). In spite of their remarkable length (7 nm) thiolated PNAs assemble standing up on gold surfaces similarly to the SAMs of short alkanethiols. SAMs of ssPNA recognize complementary nucleic acids, acting as specific biosensors that discriminate even a point mutation in target ssDNA. These results are obtained by surface characterization techniques that avoid labeling of the target molecule: x-ray photoemission, x-ray absorption and atomic force microscopy.  相似文献   

9.
The adsorption of metal ions, a type of surface reaction on binary mixed self-assembled monolayers (SAMs) on a gold surface composed of 1,6-hexanedithiol (HDT) with 11-mercaptoundecanoic acid (MUA), was monitored by in situ surface plasmon resonance (SPR) measurements. The differential SPR reflectance (ΔR) enables the kinetics of adsorption of Pt2+ on the mixed SAMs to be investigated. Unlike single HDT SAM, kinetic analyses of the mixed SAMs showed that the rate of adsorption of Pt2+ was enhanced and that it was highly dependent on the fraction of MUA present. These SPR measurements suggest that the adsorption rate of metal ions can be readily manipulated simply by using mixed SAMs.  相似文献   

10.
表面纳米结构及其自由能对滴状冷凝传热的影响   总被引:1,自引:0,他引:1  
通过抛光和氧化刻蚀方法在基体壁面形成微米和纳米尺度的微观结构,然后制备十八烷基硫醇分子自组装膜,从而得到空气中表观接触角为160°的SAM-1表面和空气中表观接触角为116°的SAM-2表面.实验研究了常压条件下两类表面的滴状冷凝传热特性.结果表明两种表面都能够有效提高冷凝传热效果.但是,具有表面纳米结构的SAM-1表面的滴状冷凝传热特性低于SAM-2表面.分析了纳米结构和液固自由能差效应对滴状冷凝传热影响的共同作用机理.  相似文献   

11.
This article presents the characterization of two substrates, silicon and polymer coated with gold, that are functionalized by mixed self-assembled monolayers (SAMs) in order to efficiently immobilize the anti-Escherichia coli O157:H7 polyclonal purified antibody.A biosurface functionalized by SAMs (self-assembled monolayers) technique has been developed. Immobilization of goat anti-E. coli O157:H7 antibody was performed by covalently bonding of thiolate mixed self-assembled monolayers (SAMs) realized on two substrates: polymer coated with gold and silicon coated with gold. The F(ab′)2 fragments of the antibodies have been used for eliminating nonspecific bindings between the Fc portions of antibodies and the Fc receptor on cells. The properties of the monolayers and the biofilm formatted with attached antibody molecules were analyzed at each step using infrared spectroscopy (FTIR-ATR), atomic force microscopy (AFM), scanning electron microscopy (SEM) and cyclic voltammetry (CV). In our study the gold-coated silicon substrates approach yielded the best results.These experimental results revealed the necessity to investigate each stage of the immobilization process taking into account in the same time the factors that influence the chemistry of the surface and the further interactions as well and also provide a solid basis for further studies aiming at elaborating sensitive and specific immunosensor or a microarray for the detection of E. coli O157:H7.  相似文献   

12.
SHAOYI JIANG 《Molecular physics》2013,111(14):2261-2275
A review is presented of this group's recent molecular simulation studies of self-assembled monolayers (SAMs) of alkanethiols on Au(111) surfaces. SAMs are very useful for the systematic alteration of the chemical and structural properties of a surface by varying chain length, tail group and composition. The scientific and technological importance of SAMs cannot be overestimated. The present work has been centred on studies of atomic scale surface properties of SAMs. First, configurational-bias Monte Carlo simulations were performed in both semigrand canonical and canonical ensembles to investigate the preferential adsorption and phase behaviour of mixed SAMs on Au(111) surfaces. Second, a novel hybrid molecular simulation technique was developed to simulate atomic force microscopy (AFM) over experimental timescales. The method combines a dynamic element model for the tip-cantilever system in AFM and a molecular dynamics relaxation approach for the sample. The hybrid simulation technique was applied to investigate atomic scale friction and adhesion properties of SAMs as a function of chain length. Third, dual-control-volume grand canonical molecular dynamics (DCV-GCMD) simulations were performed of transport diffusion of liquid water and methanol through a slit pore with both inner walls consisting of Au(111) surfaces covered by SAMs under a chemical potential gradient. Surface hydrophobicity was adjusted by varying the terminal group of CH3 (hydrophobic) or OH (hydrophilic) of the SAMs. Finally, ab initio quantum chemical calculations were performed on both clusters and periodic systems of methylthiols on Au(111) surfaces. Based on the ab initio results, an accurate force field capable of predicting c(4×2) superlattice structures over a wide range of temepratures for alkanethiols on Au(111) was developed. The extension of current work is discussed briefly.  相似文献   

13.
Structural, electronic properties and relative stability of quasi-two-dimensional (2D) free-standing planar nano-block (NBs) structures Tin+1Al0.5Cn and Tin+1Cn (n = 1 and 2), which can be prepared using the recently developed procedure of exfoliation of corresponding NBs from MAX phases, were examined within first principles calculations in comparison with parent MAX phases Ti3AlC2 and Ti2AlC. We found that in general Tin+1Cn and Tin+1Al0.5Cn NBs retain the atomic geometries of the corresponding blocks of the MAX phases, but some structural distortions for the NBs occur owing to the lowering of the coordination number for atoms in the external Ti sheets of the nano-block structures. Our analysis based on their cohesive and formation energies reveals that the stability of the nano-block structures increases with index n (or, in other words, with a growth of the number of Ti–C bonds), the Al-containing NBs becoming more stable than the “pure” Ti–C NBs. Our data show that the magnetization of the simulated planar nano-block structures can be expected; so, for the Ti3C2 nano-block the most stable will be the spin configuration, where within each external Ti sheet the spins are coupled ferromagnetically together with antiferromagnetic ordering between opposite external titanium sheets of this nano-block.  相似文献   

14.
Some general features concerning electrochemical metal deposition onto electrodes modified with self-assembled monolayers (SAMs) of alkanethiols are discussed. Although thiols of various chain length are briefly addressed, special emphasis is placed on copper deposition onto an ethanethiol (C2)-modified Au(111) surface. The short alkanethiol blocks the surface to a great extent but does not completely suppress charge transfer. We have used in situ scanning tunneling microscopy (STM) and cyclic voltammetry (CV) to characterize the structure and the electrochemical behavior of the C2 monolayer in sulfuric acid electrolyte before and after introducing copper ions to the system. The C2 adlayer consists of domains of two different ordered structures. It is shown that the adlayer undergoes a reversible order–disorder transition at potentials slightly negative of 0 V vs. SCE, which testifies to a surprisingly high mobility of the C2 molecules within the SAM. Copper deposition on C2-modified gold electrodes shows significant differences from the same process on the bare electrode. A sharp cathodic peak at -0.18 V vs. SCE is ascribed to the insertion of a Cu monolayer between Au and the organic adlayer. At low overpotentials the Cu deposit exhibits a ramified monatomic high morphology, if the ethanethiol adlayer is dense. Three-dimensional growth starts at large substrate defects. Received: 2 May 1999 / Accepted: 17 August 1999 / Published online: 6 October 1999  相似文献   

15.
Self-assembled monolayers (SAMs) of alkanethiols adsorbed onto clean surfaces of face centred cubic (fcc) metals have been studied extensively for their ability to control the chemical functionality of the surface and as a means of preventing the oxidation and corrosion of the substrate metal. However, in many cases it has been found that on reactive substrates such as copper, it is difficult to prepare SAMs without the incorporation of some oxygen into the structure. In this work, self-assembled monolayers of octadecanethiol (ODT) were formed on copper foil substrates using a series of etching treatments to remove the native oxide layer prior to deposition of the ODT coating from a modified solution. X-ray photoelectron spectroscopy was used to analyse the SAMs and showed that monolayers with no detectable oxygen content could be produced. The effect of exposing the samples to air at different temperatures was monitored to examine the rate of the oxidation process, which was found to vary strongly with temperature. Samples stored at room temperature were found to oxidise relatively quickly, while those kept in a refrigerator were slower. Storing samples in a freezer dramatically reduced the oxidation of the copper, such that samples kept for 10 weeks still did not show any clear evidence of oxygen incorporation.  相似文献   

16.
The non-linearity parameter B/A is estimated for a number of liquid crystal materials of the type N-(p-n-alkoxy benzylidene)-p-n-alkyl anilines, popularly known as nO.m, where n and m are the aliphatic chains on either side of the rigid core, which can be varied from 1 to 18 to realize a number of LC materials with a variety LC phase variants. The B/A values are computed from both density and sound velocity data following standard relations reported in literature. This systematic study in a homologous series provides an opportunity to study how this parameter behaves with (1) either the alkoxy and/or alkyl chain number, (2) with the total chain number (n+m), (3) with increase in molecular weight and (4) whether the linear relations reported in literature either with αT [thermal expansion coefficient (α) and temperature (T)] and sound velocity (u) will hold good or not and if so to what extent. The results are discussed with the body of data available in literature on liquids, liquid mixtures and other LC materials.  相似文献   

17.
The stability of four different hydrophobic surfaces in contact with water is assessed and discussed: H-terminated silicon, hexamethyldisilazane (HMDS) coated silicon, silicon surfaces covered with self-assembled monolayers (SAMs) of octadecyltrichlorosilane (OTS) and gold surfaces modified with SAMs of alkanethiols. Changes in hydrophobicity and surface oxidation were determined by contact angle measurements, X-ray photoelectron spectroscopy and AFM.  相似文献   

18.
Properties of as prepared or nanoengineered III-V semiconductor surfaces provide attractive means for photonic detection of different adsorbants from surrounding gaseous or liquid environments. To be practical, this approach requires that the surface is made selectively sensitive (functionalized) to targeted species. In addition, such surface has also to stay stable over extended period of time to make it available for rapid testing. Numerous reports demonstrate attractive properties of GaAs for sensing applications. One of the most fundamental issues relevant to these applications concerns the ability to functionalize chemically, or biologically, the surface of GaAs. The most studied method of GaAs surface functionalization is based on formation of self-assembled monolayers (SAMs) of various n-alkanethiols, HS-(CH2)n-T (T = CH3, COOH, NH2, etc.). In spite of multi-year research concerning this issue, it has only been recently that a comprehensive picture of SAMs formation on GaAs and an understanding of the natural limitation of the SAM-GaAs interface in some bio-chemical sensing architectures has begun to emerge.  相似文献   

19.
A self-assembled monolayers (SAMs) of (3-mercaptopropy) trimethoxysilane (3-MPT) chemisorbed on silver surface was chemically modified by 1-octadecanethiol (C18H37SH) (to form self-assembled mixed-monolayer (SAMM)) and the co-polymer of N-vinylcarbazole and methyl methacrylate ester to form complex self-assemblied film (CSAF). The combinative state of interface between SAMs (or SAMM) and co-polymer were characterized by dynamic mechanical thermal analysis (DMTA). The thickness of film on Ag was characterized by X-ray photoelectron spectroscopy (XPS). Cyclic voltammetry (CV) measurements in 10% NaOH aqueous solution with the silver surface and covered with film indicated that 3-MPT SAMs modified with C18H37SH and then with co-polymer have higher capability against oxidation.  相似文献   

20.
Standard positive photoresist techniques were adapted to generate sub-micron scale patterns of gold substrate using self-assembled monolayers (SAMs) and femtosecond laser. Self-assembled monolayers formed by the adsorption of alkanethiols onto gold substrate are employed as very thin photoresists. The process underlying photopatterning of SAMs on gold is well-known at the phenomenological level. Alkanethiolates formed by the adsorption of alkanethiols are oxidized on exposure to UV light in the presence of air to alkylsulfonates. Specifically, it is known that deep UV light of wavelength less than 200 nm is necessary for oxidation to occur. In this study, solid state femtosecond laser of wavelength 800 nm is applied for photolithography. The results show that ultrafast laser of near infrared (NIR) range wavelength can replace deep UV laser source for photopatterning using thin organic films. The essential basis of our approach is the photochemical excitation of specific reactions in a particular functional group (in this case a thiolate sulfur atom) distributed with monolayer coverage on a solid surface. Femtosecond laser photolithography could be applied to fabricate the patterning of surface chemical structure and the creation of three-dimensional nanostructures by combination with suitable etching methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号