首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Abnormally high heats, exceeding 1600 kJ/mol (16 eV) per molecular oxygen, are generated by interaction of the oxygen with the hydrogen adsorbed on gold surfaces at 125 °C. The highest heats were observed during the interactions of fine gold particles supported on titanium oxide, approaching 1700 kJ/mol for three consecutive 100 nmol pulses of O2 interacting with the adsorbed hydrogen atoms. The heats rapidly decrease after the hydrogen is consumed. It was also observed that the interactions of the gold particles with pure oxygen in the presence of noble gases, such as argon and helium, produced the heats markedly higher than those observed in the absence of noble gases. The abnormally high heats revealed by this work reach values from 3.5 to 6.1 times higher than the heats of formation of gaseous water from molecular hydrogen and oxygen.  相似文献   

2.
Exposure of pure gold powders to hydrogen flow at 125 °C and atmospheric pressure causes heat evolution accompanied by hydrogen adsorption. The exposure takes place in a flow-through microcalorimeter, in which the metal powders are purged by nitrogen flow used as an inert carrier gas. The adsorbed hydrogen is slowly desorbed by nitrogen flow. The heats of hydrogen adsorption and its uptake by the gold powder are greatly increased by its sequential treatments with micromole quantities of oxygen and noble gases, such as helium and argon. This increase does not take place if the gold treatment is confined only to oxygen, or only to pure noble gases. The radically increased hydrogen adsorption by gold is caused by a combination of its treatments with oxygen and the noble gases. Similar results were obtained with pure platinum powder exposed to hydrogen at room temperatures. Gold powder containing adsorbed hydrogen reacts very strongly with molecular oxygen/argon mixtures, generating heats of adsorption several times higher than the heat of formation of water. The heat evolution is very rapid and is not accompanied by the formation of water. These intense interactions are not observed after complete desorption of hydrogen from the gold surfaces.  相似文献   

3.
Chemically reduced solid-state mesophase pitch carbon fibers below 1000 °C in a flow of hydrogen gas were treated up to 3000 °C in an argon atmosphere in order to evaluate the effect of hydrogen on the graphitization behavior. Major phenomena observed during the reduction process are chemical transformation from an ether to a hydroxyl group (corresponding to the rupture of the C-O-C bond) and their subsequent evolution as gases. Finally, oversupplied hydrogen might be utilized to satisfy the dangling bond. For the sample heat treated at 3000 °C, the low crystallinity indicates that hydrogen atoms covalently bonded to the end planes of graphitic layers act as an effective barrier to crystallite growth.  相似文献   

4.
The microwave-absorbing properties for different shapes of carbonyl-iron particles prepared by the high-energy planetary ball milling with 40 vol% in epoxy resin matrix have been investigated. Higher value of magnetic permeability and permittivity can be obtained in the composites for thin flake carbonyl iron than spherical powders. The results are attributed to reduction of eddy current loss, orientation of magnetic moment and space-charge polarization with the shape change from spherical powders to thin flake particles. As the iron flakes with 0.4 μm in thickness as the absorbent fillers, the minimum RL value of −6.20 dB was observed at 4.57 GHz with thickness of 1 mm. The minimum reflection loss (RL) shifts to lower frequency and the value declines with change from spherical powders to thin flakes. It results from the considerable dielectric loss in the absorbing materials.  相似文献   

5.
In order to improve the field emission properties of the graphite flakes, the carbon nanotubes (CNTs) are produced on above without the metallic catalyst using mixtures of C2H2 and H2 gases by thermal chemical vapor deposition. We spin the graphite solution on the silicon wafer and dry it, then synthesize the CNTs on the graphite flakes. We change the synthetic time to obtain the optimal conditions for enhancement of field emission properties of graphite flakes. The experimental results show that the density and quality of the CNTs could be controlled significantly by the synthetic time. Besides, the field emission properties of the treated graphite flakes are also affected greatly by it. The emission current density of the treated graphite flakes reaches to 0.5 mA/cm2 at 3 V/μm, and the turn-on field is decreased from 7.7 to 1.9 V/μm after producing the CNTs on above.  相似文献   

6.
Possible formation of stable Au atomic wire on the hydrogen terminated Si(0 0 1): 3×1 surface is investigated under the density functional formalism. The hydrogen terminated Si(0 0 1): 3×1 surface is patterned in two different ways by removing selective hydrogen atoms from the surface. The adsorption of Au on such surfaces is studied at different sub-monolayer coverages. At 4/9 monolayer (ML) coverage, zigzag continuous Au chains are found to be stable on the patterned hydrogen terminated Si(0 0 1): 3×1 surface. The reason for the stability of the wire structures at 4/9 ML coverage is explained. It is to be noted that beyond 4/9 ML coverage, the additional Au atoms may introduce clusters on the surface. The continuous atomic gold chains on the substrate may be useful for the fabrication of atomic scale devices.  相似文献   

7.
ZnSe epilayers were grown on GaAs (1 0 0) substrates using MBE. The native contamination (oxide and carbon) was removed in situ from the substrate surfaces by conventional thermal cleaning and by exposure to atomic hydrogen. A maximum substrate temperature of 600 °C was required for the thermal cleaning process, while a substrate temperature of 450 °C was sufficient to clean the substrate using hydrogen. ZnSe epilayers were also grown on As capped GaAs epilayers, which were decapped at a maximum temperature of 350 °C. SIMS profiles showed the existence of oxygen at the interface for all of the substrate preparation methods. The oxygen surface coverage at the interface was found to be 0.03% for the atomic hydrogen cleaned substrate and 0.7% for the thermally cleaned substrate.  相似文献   

8.
It has been observed that noble gases, such as helium, neon and argon produce heat evolution when contacted with Pd powder partially saturated with hydrogen. These phenomena have been studied with flow-through adsorption microcalorimetry. The observed exothermic effects are comparable to those usually associated with the heat of sorption of hydrogen in palladium. It is suggested that the noble gases displace the adsorbed H species from the surface of Pd, causing their reabsorption in the Pd lattice with the exothermic heat of PdH bonds formation, or the formation of H2, both heat evolutions being observed with a flow-through microcalorimeter.  相似文献   

9.
We present ab-initio investigation of the electronic and magnetic structure of TM(0 0 1) surfaces and TM/Cu(0 0 1) systems (TM=Fe, Co, Ni, Cu) with and without hydrogen adsorbed layer. The adsorption energy of hydrogen atom is found to be energetically more stable above the surface layer of Ni(0 0 1) surface than other TM(0 0 1) surfaces. The adsorption energies of hydrogen on TM/Cu(0 0 1) systems are larger than those on TM(0 0 1) surfaces. The relaxed geometries show that hydrogen has a strong influence on the interlayer distance. Furthermore, a marked reduction of Fe, Co, and Ni surface magnetic moments to 2.54, 1.41 and 0.25 μB, respectively, is obtained due to the presence of hydrogen.  相似文献   

10.
The desorption kinetics of hydrogen from polished 6H-SiC(0 0 0 1) surfaces exposed to various sources of hydrogen have been determined using temperature programmed desorption (TPD). For (3 × 3) 6H-SiC(0 0 0 1) surfaces prepared via annealing and cooling in SiH4, desorption of 0.2 ± 0.05 monolayer of molecular hydrogen was observed to occur at ≈590 °C. This β1 H2 desorption peak exhibited second order kinetics with an activation energy of 2.4 ± 0.2 eV. For (3 × 3) 6H-SiC surfaces exposed to atomic hydrogen generated via either a hot rhenium filament or remote hydrogen plasma, low energy electron diffraction patterns showed an eventual conversion back to (1 × 1) symmetry. Spectra acquired using Auger electron and X-ray photoelectron spectroscopies revealed that the atomic hydrogen exposure removed the excess Si. Photoelectron spectroscopy results also showed a 0.5 eV increase in binding energy for the Si2p and C1s core levels after removal of the Si-Si bilayer that is indicative of a decrease in band bending at the SiC surface. TPD from the (3 × 3) 6H-SiC(0 0 0 1) surfaces exposed to atomic hydrogen showed substantially more molecular hydrogen desorption (1-2 ML) through the appearance of a new desorption peak (β2,3) that started at ≈200 °C. The β2,3 peak exhibited second order desorption kinetics and a much lower activation energy of 0.6 ± 0.2 eV. A third smaller hydrogen desorption state was also detected in the 650-850 °C range. This last feature could be resolved into two separate desorption peaks (α1 and α2) both of which exhibited second order kinetics with activation energies of 4.15 ± 0.15 and 4.3 ± 0.15 eV, respectively. Based on comparisons to hydrogen desorption from Si and diamond surfaces, the β and α desorption peaks were assigned to hydrogen desorption from Si and C sites, respectively.  相似文献   

11.
Thin films of plasma-polymerized thiophene (PPTh) were deposited on cold-rolled steel substrates to improve adhesion to rubber compounds. PPTh films were characterized by X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy (FT-IR) and atomic force microscopy. The ratio of carbon-to-sulfur found in PPTh films is 4:1, suggesting the monomer structure is generally intact, which was supported by FT-IR absorptions characteristic of polymerized thiophene rings. However, some fragmentation did occur to give acetylenic and aliphatic groups. Steel-rubber adhesion measurements, performed in accordance with the ASTM 429-B peel test, strongly depended on cleaning and pretreatment methods as well as film thickness. Best results were obtained on polished steel samples that were cleaned with acid, pretreated with a hydrogen/argon plasma, then coated with 50 Å of PPTh film. These samples exhibited a peel force of 14.3 N/mm, which is comparable to that of polished brass control samples. Depth-profiling XPS analysis of the rubber-steel interface showed the existence of an iron sulfide layer which is likely responsible for the strong adhesion.  相似文献   

12.
Using real-time, dynamic reflectance anisotropy spectroscopy (RAS) at both 2.6 eV and 4.0 eV, we demonstrate that an anisotropic oxide will form on As rich c(4 × 4)/d(4 × 4) GaAs surfaces when exposed to moisture- free air diluted in inert gases in a metal organic chemical vapour deposition (MOCVD) reactor, and that the initial c(4 × 4)/d(4 × 4) structure effects the resulting optical anisotropy of the oxide. This was achieved by investigating how the RA signals at 2.6 eV and 4 eV of annealed GaAs (1 0 0) surfaces evolve relative to the as-etched and as-annealed signals when exposed to oxygen. It is found that while the 2.6 eV response, which is known to be associated with the As dimers, degrades to pre-process levels indicating their destruction, the 4 eV signal, stabilizes at an intermediate, permanent level, suggesting the formation of an anisotropic oxide film whose structure is determined at least in part, by the initial c(4 × 4)/d(4 × 4) surface.  相似文献   

13.
X-ray photoelectron spectroscopy (XPS) has been used to investigate the changes in surface composition of three steels as they have undergone heating. The steels were mild steel, and two austenitic stainless steels, commonly designated 304 and 316 stainless steels. XPS measurements were made on the untreated samples, and then following heating for 30 min in vacuo and in a 1 × 10−6 Torr partial pressure of air, at temperatures between 100 °C and 600 °C.Mild steel behaves differently to the two stainless steels under the heating conditions. In mild steel the iron content of the surface increased, with oxygen and carbon decreasing, as a function of increasing temperature. The chemical state of the iron also changed from oxide at low temperatures, to metallic at temperatures above 450 °C.In both stainless steels the amount of iron present in the surface decreased with increasing temperature. The decrease in iron at the surface was accompanied by an increase in the amount of chromium at the steel surface. At temperatures above 450 °C the iron in both 304 and 316 stainless steels showed significant contributions from metallic iron, whilst the chromium present was in an oxide state. In 316 stainless steel heated to 600 °C there was some metallic chromium present in the surface layer.The surfaces heated in air showed the least variation in composition, with the major change being the loss of carbon from the surfaces following heating above 300 °C. There was also a minor increase in the concentration of chromium present on both the stainless steels heated under these conditions. There was also little change in the oxidation state of the iron and chromium present on the surface of these steels. There was some evidence of the thickening of the surface oxides as seen by the loss of the lower binding energy signal in the iron or chromium core level scans.The surfaces heated in vacuum showed a similar trend in the concentration of carbon on the surfaces, however the overall concentration of oxygen decreased throughout the heating of these steels. There were also significant changes in the oxidation state of the iron and chromium on these surfaces with significant amounts or iron and chromium present in the metallic form following heating up to 600 °C.It appears that the carbon contamination on the surfaces plays an important role in the fate of the surface oxide layer for all of the steels heated in a vacuum environment.  相似文献   

14.
D. Kecik 《Surface science》2009,603(2):304-3199
A first principles study is performed to investigate the adsorption characteristics of hydrogen on magnesium surface. Substitutional and on-surface adsorption energies are calculated for Mg (0 0 0 1) surface alloyed with the selected elements. To further analyze the hydrogen-magnesium interaction, first principles molecular dynamics method is used which simulates the behavior of H2 at the surface. Also, charge density differences of substitutionally doped surface configurations were illustrated. Accordingly, Mo and Ni are among the elements yielding lower adsorption energies, which are found to be −9.2626 and −5.2995 eV for substitutionally alloyed surfaces, respectively. In light of the dynamic calculations, Co as an alloying element is found to have a splitting effect on H2 in 50 fs, where the first hydrogen atom is taken inside the Mg substrate right after the decomposition and the other after 1300 fs. An interesting remark is that, elements which acquire higher chances of adsorption are also seen to be competent at dissociating the hydrogen molecule. Furthermore, charge density distributions support the results of molecular dynamics simulations, by verifying the distinguished effects of most of the 3d and 4d transition metals.  相似文献   

15.
The trapping probabilities of argon, krypton, and xenon on Pd(1 1 1) and Ni(1 1 1) have been investigated using supersonic molecular beam techniques. The trapping probability of argon exhibits normal incident energy in a similar fashion on both Pd(1 1 1) and Pt(1 1 1) because the mass of argon is significantly less than the surface mass of either Pd or Pt. In contrast, dynamic corrugation in the gas-surface potential is observed for krypton trapping on Pt(1 1 1) and Pd(1 1 1), resulting in a decreased angular dependence of the trapping probability compared to argon. For xenon trapping on Pd significant lattice deformation during the gas-surface collision appears to give rise to total energy scaling. The trapping probability of xenon on Pd(1 1 1) remains high at unusually high incident kinetic energies due to the overall enhanced energy transfer from the incident atom to the lattice. Trapping probabilities of Ar, Kr, and Xe are significantly lower on Ni(1 1 1) than on either Pt(1 1 1) or Pd(1 1 1) despite the lower surface mass of the Ni atoms. This result is attributed to the lower binding energy of the rare gases on Ni(1 1 1) and the higher Debye temperature of Ni. The energy scaling of Ar trapping on Ni(1 1 1) is determined by static corrugation, but the energy scaling for Kr and Xe on Ni(1 1 1) may involve the effects of dynamic corrugation. In the latter cases, the greater stiffness of the nickel lattice decreases the dynamic corrugation relative to Pt(1 1 1) and Pd(1 1 1).  相似文献   

16.
The formation energies and the migration energies of an isolated vacancy and adatom formed on low-index surfaces are calculated with MAEAM for three noble metals Cu, Ag and Au. The results indicate that the formation energies of an isolated vacancy or adatom increase with increasing atom density in the sequence (1 1 0) → (1 0 0) → (1 1 1), and it is more difficult to form an adatom than to form a vacancy at the same surface. For the mobility of an isolated vacancy, the migration energy grows in the sequence (1 0 0) → (1 1 0) → (1 1 1) for each noble metal. However, a much less migration energy is obtained for the migration of an adatom on (1 1 1) surface.  相似文献   

17.
The 3-dimensional atom probe (3DAP) is a unique instrument providing chemical analysis at the atomic scale for a wide range of materials. A dedicated 3DAP has been built specifically for analysing reactions at metal surfaces, called the catalytic atom probe (CAP). This paper presents an overview of results from the CAP on structural and chemical transformations to surface layers of Pt and Pt-17.4 at.%Rh catalysts following exposure to a number of gases typically emitted by vehicle engine exhausts, normally for 15 min at pressures of 10 mbar. Following exposure to the oxidising gases NO on Pt, and NO, O2 or N2O on Pt-Rh, both surfaces appear disrupted, while for Pt-Rh, Rh enrichment of the surface atomic layer is noted over the entire specimen apex for exposure temperatures up to 523 K. However, for oxidising exposures at 573-773 K relatively clean, Rh-depleted surfaces are observed on {0 0 1}, {0 1 1} and {0 1 2} crystallographic regions of Pt-Rh. It is suggested that this result is due to surface diffusion of oxide species over the specimen apex, towards the {1 1 1}-orientated areas where the oxides appear to be stabilised. In contrast, CO exposure appears to have little effect on the either the surface structure or composition of the Pt-Rh alloy. Finally, combinations of two gases (NO + CO, O2 + NO) were also dosed onto Pt-Rh alloys in the same exposure. These revealed that while NO and CO can co-adsorb without interference, CO prevents the build up of oxide layers and reduces the extent of Rh segregation seen under NO exposure alone. On exposing Pt-Rh to NO after an oxygen exposure, heavily oxidised surfaces, Rh segregation and no intact NO molecules were seen, confirming the ability of oxidised Pt-Rh to dissociate nitric oxide.  相似文献   

18.
The quasi two-dimensional surface state on noble metal (1 1 1)-surfaces can be used as a sensitive probe for different surface modifications, adsorption processes, and interactions between adsorbate and substrate. Already one monolayer of physisorbed Xe on Au(1 1 1) is responsible for a characteristic shift of the Shockley state towards the Fermi level and the surface state experiences an increase in spin-orbit splitting of up to 35%. In contrast to the physisorption process of rare gases, a sub-monolayer coverage of an alkali metal, e.g., Na on Au(1 1 1), has the opposite effect on the Shockley state, i.e. an increase in binding energy, until it reaches the bottom of the L-gap and vanishes into the bulk states. Additionally, we studied the intermetallic system Ag/Au(1 1 1) which differs substantially from the other systems because of the similarity in the electronic structure between substrate and overlayer.  相似文献   

19.
N-type 4H-SiC (0 0 0 1) surfaces were cleaned by low temperature hydrogen plasma in electronic cyclotron resonance (ECR) microware plasma system. The effects of the hydrogen plasma treatment (HPT) on the structure, chemical and electronic properties of surfaces were characterized by in situ reflection high energy electron diffraction (RHEED) and X-ray photoelectron spectroscopy (XPS). The RHEED results indicate that the structures of the films are strongly dependent on the treatment temperature and time. Significant improvements in quality of 4H-SiC films can be obtained with the temperature ranging from 200 °C to 700 °C for an appropriate treatment period. The XPS results show that the surface oxygen is greatly reduced and the carbon contamination is completely removed from the 4H-SiC surfaces. The hydrogenated SiC surfaces exhibit an unprecedented stability against oxidation in the air. The surface Fermi level moves toward the conduction band in 4H-SiC after the treatment indicating an unpinning Fermi level with the density of surfaces states as low as 8.09 × 1010 cm−2 eV−1.  相似文献   

20.
Magnetite nano-particles were coated with sodium oleate and the spectral behaviour of the coating layer was studied by FTIR spectroscopy after the particles had been heated in air and argon. Magnetite was synthesized by controlled co-precipitation and subsequently coated with sodium oleate. Thermal analysis in combination with mass spectroscopy was carried out to support the FTIR spectroscopic interpretations, but also to monitor the decomposition and surface reaction of oleate adsorbed on the magnetite surface. It was deduced from FTIR and TGA results that the oleate molecules are bonded to iron atoms by a bidentate mononuclear complex and form essentially a single layer with a distance between oleate molecules of ∼36 Å2. It was shown by IR as well as Raman spectroscopy that oleic acid, when heated in air, undergoes decomposition implying that new carbon-oxygen bonds are formed. Heating the iron oxide-oleate system in air also implies oxidation of the double bond at the C:9 position of the alkyl chain and formation of intermediate oxygen-rich molecules. An enthalpy change of ΔH = 49.86 J/g was obtained for oleate desorption/decomposition at ∼350 °C under argon atmosphere and a carbonaceous graphitic species resulted from this decomposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号