首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Organosilanes with different organic functional groups are precursors of corresponding organosilanol which can be attached to the surface of oxide nanoparticles by silyation. In this work, surface of commercial TiO2 nanoparticles was modified by 3-aminopropyltrimethoxysilane (APS) and phenyltrimethoxysilane (PTMS) through an aqueous process. The amount of adsorbed organosilane was evaluated by energy dispersive X-ray spectroscopy and was found to be 3 times higher on PTMS treated sample than on APS treated sample. The orientation and bonding of the molecules on particle surface was analyzed using Fourier transform infrared spectroscopy and time-of-flight secondary ion mass spectrometry. The obtained data confirmed that bonding of organosilanols on particle surface was realized through Si-O-Ti bonds and organic functional groups were extended away from particle surface on both APS and PTMS modified particles. It was found that phenylsilanol molecules are cross-linked to each other through Si-O-Si bonds, while such bonds are very little to none between aminosilanol molecules. A model of adsorption is proposed to explain these observations.  相似文献   

2.
The LEBIT (Low Energy Beam and Ion Trap) facility is the only Penning trap mass spectrometry (PTMS) facility to utilize rare isotopes produced via fast-beam fragmentation. This technique allows access to practically all elements lighter than uranium, and in particular enables the production of isotopes that are not available or that are difficult to obtain at isotope separation on-line facilities. The preparation of the high-energy rare-isotope beam produced by projectile fragmentation for low-energy PTMS experiments is achieved by gas stopping to slow down and thermalize the fast-beam ions, along with an rf quadrupole cooler and buncher and rf quadrupole ion guides to deliver the beam to the Penning trap. During its first phase of operation LEBIT has been very successful, and new developments are now underway to access rare isotopes even farther from stability, which requires dealing with extremely short lifetimes and low production rates. These developments aim at increasing delivery efficiency, minimizing delivery and measurement time, and maximizing use of available beam time. They include an upgrade to the gas-stopping station, active magnetic field monitoring and stabilization by employing a miniature Penning trap as a magnetometer, the use of stored waveform inverse Fourier transform (SWIFT) to most effectively remove unwanted ions, and charge breeding.  相似文献   

3.
Monodisperse organically modified silica (ORMOSIL) particles, with an average diameter ranging from 550 nm to 4.2 μm, were prepared at low temperature at a scale of about 10 g/batch by a simple one-step self-emulsion process. The reaction mixture was composed only of water, phenyltrimethoxysilane (PTMS), and a base catalyst, without any surfactants. The size control of the particles and the monodispersity of resultant particles were achieved through the controlled supply of hydrolyzed PTMS monomer molecules, which was enabled by manipulating the reaction parameters, such as monomer concentration, type and amount of base catalyst, stirring rate, and reaction temperature. PTMS-based ORMOSIL particles were converted into silica particles by employing either a wet chemical reaction with an oleum-sulfuric acid mixture or thermal treatment above 650 °C. Complete removal of organic groups from the ORMOSIL particles was achieved by the thermal treatment while ~?74% removal was done by the chemical process used.
Graphical abstract ?
  相似文献   

4.
The UW-PTMS     
The University of Washington Penning Trap Mass Spectrometer (UW-PTMS) is now producing measurements with uncertainties approaching 10 parts per trillion (ppt). We have recently published (Van Dyck, Jr. et al., Int J Mass Spectrom 251:231–242, 2006) detailed analysis of several systematic shifts which can be important at this level of accuracy. Experimental studies of these effects in our older PTMS, combined with preliminary analysis of 2H data, and re-analysis of the previously reported 4He (Van Dyck, Jr. et al., Phys Rev Lett 92:220802/1, 2004) and 16O (Van Dyck, Jr. et al., Hyperfine Interact 132:163–175, 2001) data, gives more accurate atomic mass values for 16O, 4He, and 2H. Currently we are taking data for a new measurement of the 3He atomic mass, and working on some improvements to the PTMS, including a new amplifier system for phase-sensitive detection of the ion’s axial motion, and a new computer-controlled ultra-stable voltage source for the Penning trap’s ring electrode, used to adjust the ion’s axial frequency. These new systems will allow us to simultaneously manipulate individual ions in two nearby Penning traps, and some sources of noise will be the same for both traps. We plan to investigate several techniques which should reduce measurement time and improve accuracy by working with the two ions simultaneously. This material is supported by the National Science Foundation under Grant No. 0353712.  相似文献   

5.
Development of mesoporous structures of composite silica particles with various organic functional groups was investigated by using a two-step process, consisting of one-pot sol-gel process in the presence and absence of ammonium hydroxide and a selective dissolution process with an ethanol-water mixture. Five different organosilanes, including methyltrimethoxysilane (MTMS), 3-mercaptopropyltrimethoxysilane (MPTMS), phenyltrimethoxysilane (PTMS), vinyltrimethoxysilane (VTMS), and 3-aminopropyltrimethoxysilane (APTMS) were employed. The mesoporous (organically modified silica) ORMOSIL particles were obtained even in the absence of ammonium hydroxide when the reaction mixture contained APTMS. The morphology of the particles, however, were different from those prepared with ammonia catalyst and the same organosilane mixtures, probably because the overall hydrolysis/condensation rates became slower. Co-existence of APTMS and VTMS was essential to prepare mesoporous particles from ternary organosilane mixtures. The work presented here demonstrates that organosilica particles with desired functionality and desired mesoporous structures can be obtained by selecting proper types of organosilane monomers and performing a facile and mild process either with or without ammonium hydroxide.  相似文献   

6.
M. Kaltchev  W. T. Tysoe   《Surface science》1999,430(1-3):29-36
The surface chemical activity of an alumina films grown on Mo(100) by oxidation of aluminum evaporated onto the surface and oxidized using water is examined using Auger, X-ray photoelectron and reflection/absorption infrared spectroscopies. The formation of alumina is confirmed using Auger and X-ray photoelectron spectroscopy from the positions and intensities of the aluminum features and using reflection-absorption infrared spectroscopy from the longitudinal optical modes of the Al–O bonds measured at 935 cm−1. The presence of surface hydroxyls is monitored by forming films using D2O which are evidenced by a feature at 2700 cm−1. Ammonia adsorption on a dehydroxylated surface yields a single peak at 1260 cm−1 due to ammonia adsorbed at a surface Lewis site where the principle symmetry axis of ammonia is oriented perpendicularly to the surface plane. Ammonia also appears to adsorb at Lewis sites on a hydroxylated surface with a slightly different adsorption geometry from that on a dehydroxylated surface. Finally, the chemistry of trimethyl aluminum adsorbed on the planar hydroxylated alumina surface is compared with that found on high-surface-area γ-alumina where the spectra and the chemistry found in both régimes is exactly identical except that the low-frequency methyl bending modes (at 769 and 718 cm−1) are not obscured on the thin film by the intense substrate whereas they are on the high-surface-area support.  相似文献   

7.
The functionalization of xerogels for use in chromatography and catalysis was carried out by solubilization of amorphous silica using a soxhlet extractor. Xerogels were prepared by sol-gel method using tetraethoxysilane, TEOS, ethanol, and water in a 1/3/10 molar ratio with HCl and HF as catalysts. The samples were prepared in monolithic form and dried at 70 °C and 550 °C for 1 h each. After functionalization, changes in textural and morphological characteristics of xerogels were investigated by means of nitrogen gas adsorption, positron annihilation lifetime spectroscopy (PALS), and scanning electron microscopy (SEM). As the analysis methods are based on different physical principles, the results are complementary, leading to a good knowledge of the texture of the samples studied.  相似文献   

8.
We investigate the effect of system properties and adsorption sequence on competitive adsorption of poly(methyl methacrylate) (PMMA) and polystyrene (PS) on narrowly polydispersed cobalt (Co) nanoparticles (D ∼ 27 nm). The adsorbed layer composition is studied using thermo-gravimetric analysis (TGA). We find that adsorbed layers of PS are completely displaced by PMMA when the solvent is a common good solvent. An adsorbed layer of only PMMA is also obtained through competitive adsorption from a common good solvent. However, in a selective solvent that is poor for PS, sequential adsorption leads to the formation of mixed layers.  相似文献   

9.
Adsorption energies and vibrational frequencies of CO and NO adsorbed on gold (1 1 1), (1 0 0), (1 1 0) and (3 1 0) surfaces, as well as on adatoms on Au(1 0 0) have been calculated using density functional theory. The results clearly show that the adsorption energy of the molecules increases considerably with increasing the degree of coordinative unsaturation of the gold atoms to which the molecules bind, and thus support the view that defects, steps and kinks on the surface determine the activity of gold catalysts.  相似文献   

10.
Irreversible adsorption of polystyrene latex particles of micrometer size range at heterogeneous surfaces was studied experimentally. Model substrate surfaces of controlled site coverage (heterogeneity degree) used in these studies were produced by preadsorption of positively charged latex particles on mica sheets. Deposition kinetics of latex was studied as a function of the site coverage, particle to site size ratio λ and ionic strength of the colloid suspension. Particle distributions over surfaces and coverage were quantitatively evaluated by the direct microscope observation techniques using the diffusion cell. In this way, pair correlation function for various coverage degree and particle size ratio was evaluated. It also was determined the dependence of the jamming coverage of colloid particles on site coverage and ionic strength of the suspension. It was demonstrated that the decrease in the ionic strength of the suspension resulted in a significant decrease in the jamming coverage. This was attributed to the effect of the electrostatic field generated by the interface whose range was increased for low ionic strength. These experimental data revealed, in accordance with theoretical predictions derived from numerical simulations, that the multiple site coordination exerted a pronounced effect on the jamming coverage and the structure of adsorbed layers. It also was shown that this effect can be regulated by changes in the ionic strength of particle suspensions. This could allow one to produce particle clusters at the surface of targeted composition.  相似文献   

11.
Adsorption phenomena are characterized by models that include free parameters trying to reproduce experimental results. In order to understand the relationship between the model parameters and the material properties, the adsorption of small molecules on a crystalline plane surface has been simulated using the bond fluctuation model. A direct comparison between the Guggenheim–Anderson–de Boer (GAB) model for multilayer adsorption and computer simulations allowed us to establish correlations between the adsorption model parameters and the simulated interaction potentials.  相似文献   

12.
H2 interaction with thin Rh films deposited on Pyrex glass under UHV conditions has been studied by simultaneous measurement of work function changes ΔΦ and hydrogen pressure P, at selected constant temperatures: 78 and 298 K. Prior to the adsorption experiments the thin film topography was illustrated using the AFM and STM methods. The influence of hydrogen adsorption on the resistance of thin Rh film was examined in the course of an independent experiment. The number of sites accessible for adsorption on the thin Rh film surface was found determining population of oxygen adatoms within the monolayer at 78 K, when incorporation of these adspecies below the surface is negligible. It was established that at all examined temperatures hydrogen adsorption led to coverage Θ approaching 1 under equilibrium pressure below 10−3 Pa, increasing the work function. Under higher H2 pressure an additional uptake of hydrogen leading to Θ ∼ 1.68 at 298 K, and to Θ ∼ 2 at 78 K is reached. On this surface at low temperatures there exist weakly bound, reversibly adsorbed, positively charged adspecies characteristic for hydrogen adsorption on transition metal hydrides. The change of thin Rh film resistance caused by hydrogen adsorption was not measurable.  相似文献   

13.
张杨  黄燕  陈效双  陆卫 《物理学报》2013,62(20):206102-206102
基于第一性原理方法, 采用广义梯度近似的交换关联势, 对InSb材料(110)表面的硫吸附和氧吸附之后体系性质的差异进行了分析. 讨论了两种吸附下的键长、键角、能带结构和态密度的变化, 从理论上论证了硫吸附比氧吸附对InSb红外探测器表面态的钝化有优越性, 有利于工艺上在钝化时的选择. 关键词: 第一性原理 InSb 硫吸附 氧吸附  相似文献   

14.
Jia-Li Liu 《中国物理 B》2022,31(11):118101-118101
UiO-66 is a potential material for adsorption heat transformation (AHT) with high specific surface area, and excellent thermal and chemical stability. However, the low water adsorption capacity of UiO-66 in the low relative pressure range ($0< P/P_0< 0.3$) limits its application in AHT. We prepare the UiO-66 modified by MgCl$_{2 }$ through using the solvothermal method and impregnation method, and study their water vapor adsorption performances and heat storage capacities. Attributed to the extremely high saturated water uptake and excellent hydrophilicity of MgCl$_{2}$, the water adsorption performance of UiO-66 is improved, although the introduction of MgCl$_{2}$ reduces its specific surface area and pore volume. The water adsorption capacity at $P/P_0=0.3$ and the saturated water adsorption capacity of the UiO-66 (with MgCl$_{2}$ content of 0.57 wt%) modified by the solvothermal method are 0.27 g/g and 0.57 g/g at 298 K, respectively, which are 68.8% and 32.6% higher than the counterparts of pure UiO-66, respectively. Comparing with pure UiO-66, the water adsorption capacity of the UiO-66 (with MgCl$_{2}$ content of 1.02 wt%) modified by the impregnation method is increased by 56.3% and 14.0% at the same pressure, respectively. During 20 water adsorption/desorption cycles, the above two materials show high heat storage densities ($\sim1293 $ J/g and 1378 J/g). Therein, the UiO-66 modified by the solvothermal method exhibits the excellent cyclic stability. These results suggest that the introduction of an appropriate amount of MgCl$_{2}$ makes UiO-66 more suitable for AHT applications.  相似文献   

15.
In this work, the ethanol adsorption on a perfect MgO(1 0 0) surface, and also on topologic surface defects of MgO, is studied. Terrace, edge and corner sites were analyzed, whose O and Mg ions are five, four and three fold coordinated, respectively. All the calculations were performed using a cluster approach and the DFT based method. The ethanol molecule chemisorbs non-dissociatively on terrace sites of MgO by means of a two fold interaction while strong dissociative chemisorptions are produced on edge and corner sites. The weakened alcohol OH group is always oriented so that its oxygen (Oa) atom is linked to a Mg cation and the H atom to a surface O anion. The MgOa distance for edge and corner sites is smaller than that for the terrace site. This indicates that lowering the coordination number of ions in the adsorption site yields an increase of molecule-surface bond strength in agreement with a greater basicity of low coordinate sites. The behavior of the adsorption energy and the charge transfers are in accord with the idea of a strong basic character for the MgO substrate, which is more pronounced as the coordination number of ions decrease.  相似文献   

16.
17.
Simulations of particle multilayer build-up in the layer by layer (LbL) self-assembling processes have been performed according to the generalized random sequential adsorption (RSA) scheme. The first (precursor) layer having an arbitrary coverage of adsorption centers was generated using the standard RSA scheme pertinent to homogeneous surface. Formation of the consecutive layers (up to 20) was simulated by assuming short-range interaction potentials for two kinds of particles of equal size. Interaction of two particles of different kind resulted in irreversible and localized adsorption upon their contact, whereas particles of the same kind were assumed to interact via the hard potential (no adsorption possible). Using this algorithm theoretical simulations were performed aimed at determining the particle volume fraction as a function of the distance from the interface, as well as the multilayer film roughness and thickness as a function of the number of layers. The simulations revealed that particle concentration distribution in the film was more uniform for low precursor layer density than for higher density, where well-defined layers of closely packed particles appeared. On the other hand, the roughness of the film was the lowest at the highest precursor layer density. It was also predicted theoretically that for low precursor layer density the film thickness increased with the number of layers in a non-linear way. However, for high precursor layer density, the film thickness increased linearly with the number of layers and the average layer thickness was equal to 1.58 of the particle radius, which is close to the closely packed hexagonal layer thickness equal to 1.73. It was concluded by analysing the existing data for colloid particles and polyelectrolytes that the theoretical results can be effectively exploited for interpretation of the LbL processes involving colloid particles and molecular species like polymers or proteins.  相似文献   

18.
The adsorption of ethylene by zeolite NaY and zeolite NaY modified by cation exchange with potassium, rubidium, and cesium ions was studied. Cation exchanges were carried out using KNO3, RbNO3, and CsNO3 in the concentration ranges of 0.2-10 mM. XRD patterns and specific surface areas illustrated that modification of NaY zeolite by very dilute solutions containing K+, Rb+ and Cs+ did not lead to significant changes in the crystallinity. Analysis of metals content (ICP-OES) showed that Cs+ can replace Na+ better than Rb+ and K+. Particle analysis indicated slight decreases in surface area but pore volumes and pore diameters remained unchanged. Ethylene adsorption isotherms indicated that Na-Y zeolite which was modified by 5.0 mM KNO3, 0.5 mM RbNO3 and 1.0 mM CsNO3 could adsorb ethylene better than zeolite Na-Y. K-NaY zeolite adsorbed up to 102.45 cm3/g ethylene, while Rb-NaY and Cs-NaY zeolites adsorbed up to 98.50 cm3/g and 90.15 cm3/g ethylene, respectively. Ethylene adsorption capacities depended on number of adsorption sites and surface interactions.  相似文献   

19.
以六水合氯化镍、七水合硫酸钴、氧化石墨烯(GO)和赤磷为原料,利用原位水热法,在不添加任何表面活性剂的情况下,合成了磷化钴镍/还原氧化石墨烯(NiCoP/rGO)纳米复合材料,并通过XRD、SEM、TEM、IR、Raman等对该复合材料进行了表征.结果表明,所得复合材料由NiCoP纳米颗粒和还原氧化石墨烯片层结构组成,NiCoP纳米颗粒尺寸大约为20 nm,均匀分布在rGO片层结构表面上,同时探讨了复合材料的形成过程.另外,复合材料的吸附脱除实验表明,所得复合材料对多种染料都具有非常好的吸附作用,因此,在污水处理方面有较大的应用价值.  相似文献   

20.
Studies were presented on production of highly dispersed magnesium silicate at a pilote scale. The process of silicate adsorbent production involved precipitation reaction using water glass (sodium metasilicate) solution and appropriate magnesium salt, preceded by an appropriate optimization stage. Samples of best physicochemical parameters were in addition modified (in order to introduce to silica surface of several functional groups) using the dry technique and various amounts of 3-isocyanatepropyltrimethoxysilane, 3-thiocyanatepropyltrimethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane. The so prepared samples were subjected to a comprehensive physicochemical analysis. At the terminal stage of studies attempts were made to adsorb phenol from its aqueous solutions on the surface of unmodified and modified magnesium silicates. Particle size distributions were determined using the ZetaSizer Nano ZS apparatus. In order to define adsorptive properties of studied magnesium silicates isotherms of nitrogen adsorption/desorption on their surfaces were established. Efficiency of phenol adsorption was tested employing analysis of post-adsorption solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号