首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
We investigated UV absorption changes induced in 3.5 mol% Ge-doped fused silica at high-intensity (∼1011-1013 W/cm2) femtosecond (130 fs) irradiation at 267, 400 and 800 nm. We have shown that the induced spectra in the region 190-300 nm are similar in all three cases. At 800 nm irradiation, in addition to the UV absorption changes, we observed small-scale damage due to self-focusing. This damage appears when the incident pulse fluence value of about 1 J/cm2 (pulse intensity of about 7.5 × 1012 W/cm2) is overcome, while the threshold for the induced absorption changes is twice lower.  相似文献   

2.
The selective ablation of thin (∼100 nm) SiO2 layers from silicon wafers has been investigated by applying ultra-short laser pulses at a wavelength of 800 nm with pulse durations in the range from 50 to 2000 fs. We found a strong, monotonic decrease of the laser fluence needed for complete ablation of the dielectric layer with decreasing pulse duration. The threshold fluence for 100% ablation probability decreased from 750 mJ/cm2 at 2 ps to 480 mJ/cm2 at 50 fs. Significant corruption of the opened Si surface has been observed above ∼1200 mJ/cm2, independent of pulse duration. By a detailed analysis of the experimental series the values for melting and breaking thresholds are obtained; the physical mechanisms responsible for the significant dependence on the laser pulse duration are discussed.  相似文献   

3.
Fast heating of target material by femtosecond laser pulse (fsLP) with duration τL∼40-100 fs results in the formation of thermomechanically stressed state. Its unloading may cause frontal cavitation of subsurface layer at a depth of 50 nm for Al and 100 nm for Au. The compression wave propagating deep into material hits the rear-side of the target with the formation of rarefaction wave. The last may produce cracks and rear-side spallation. Results of MD simulations of ablation and spallation of Al and Au metals under action fsLP are presented. It is shown that the used EAM potentials (Mishin et al. and our new one) predict the different ablation and spallation thresholds on absorbed fluence in Al: ablation Fa=60{65} mJ/cm2and spallation Fs=120{190} mJ/cm2, where numbers in brackets { } show the corresponding values for Mishin potential. The strain rate in spallation zone was 4.3×109 1/s at spallation threshold. Simulated spall strength of Al is 7.4{8.7} GPa, that is noticeably less than 10.3{14} GPa obtained from acoustic approximation with the use of velocity pullback on velocity profile of free rear surface. The ablation threshold Fa≈120 mJ/cm2 and crater depth of 110 nm are obtained in MD simulations of gold with the new EAM potential. They agree well with experiment.  相似文献   

4.
We have developed a patterning procedure based on selective ablation using interference patterns with ns-laser pulses to fabricate periodic arrays on large areas of poly(3,4-ethylene dioxythiophene)-poly(4-styrene sulfonic acid) (PEDOT-PSS) thin films over a metallic gold–palladium layer. Single pulse laser-ablation experiments were performed to study the ablation characteristics of the thin films as a function of the film thickness. The ablation threshold fluence of the PEDOT-PSS films was found to be dependent on thickness with values ranging from 43 mJ/cm2 to 252 mJ/cm2. Additionally, fluences at which the PEDOT-PSS films could be ablated without inducing damage in the underlying metallic films were observed (128 mJ/cm2 and 402 mJ/cm2 for film thicknesses of 70 nm and 825 nm, respectively). Linear periodic arrays with line spacings of 7.82 μm and 13.50 μm were also fabricated. The surface topography of these arrays was analyzed using scanning electron and atomic force microscopy. For thicker polymeric layers, several peeled sub-layers of the conjugated polymer with average thicknesses of about 165–185 nm were observed in the ablation experiments. The size and scale of structures produced by this technique could be suitable for several biomedical applications and devices in which controlling cell adhesion, promoting cell alignment, or improving biocompatibility are important.  相似文献   

5.
This paper investigates the surface treatment of screen-printed carbon nanotube (CNT) emitters using a 248 nm (KrF) excimer laser. The field emission characteristics of the CNT emitters are measured following irradiation using laser fluences ranging from 80 to 400 mJ/cm2. The results show that the turn-on electric field, the current density, and the distribution of the emission sites are highly dependent on the value of the laser fluence and are optimized at a fluence of 150 mJ/cm2. Two distinct laser fluence regimes are identified. In the low fluence regime, i.e. 80-150 mJ/cm2, the surface treatment process is dominated by a photo ablation mechanism, which results in the gradual removal of the binding material from the cathode surface and leads to an improvement in the emission characteristics of the CNT cathodes with an increasing fluence. However, in the high fluence regime, i.e. 150-400 mJ/cm2, the thermal ablation mechanism dominates; resulting in a removal of the CNTs from the cathode surface and a subsequent degradation in the emission characteristics.  相似文献   

6.
Femtosecond pulsed laser ablation (τ = 120 fs, λ = 800 nm, repetition rate = 1 kHz) of thin diamond-like carbon (DLC) films on silicon was conducted in air using a direct focusing technique for estimating ablation threshold and investigating the influence of ablation parameter on the morphological features of ablated regions. The single-pulse ablation threshold estimated by two different methods were ?th(1) = 2.43 and 2.51 J/cm2. The morphological changes were evaluated by means of scanning electron microscopy. A comparison with picosecond pulsed laser ablation shows lower threshold and reduced collateral thermal damage.  相似文献   

7.
Ultra-short pulsed laser ablation and micromachining of n-type, 4H-SiC wafer was performed using a 1552 nm wavelength, 2 ps pulse, 5 μJ pulse energy erbium-doped fiber laser with an objective of rapid etching of diaphragms for pressure sensors. Ablation rate, studied as a function of energy fluence, reached a maximum of 20 nm per pulse at 10 mJ/cm2, which is much higher than that achievable by the femtosecond laser for the equivalent energy fluence. Ablation threshold was determined as 2 mJ/cm2. Scanning electron microscope images supported the Coulomb explosion (CE) mechanism by revealing very fine particulates, smooth surfaces and absence of thermal effects including melt layer formation. It is hypothesized that defect-activated absorption and multiphoton absorption mechanisms gave rise to a charge density in the surface layers required for CE and enabled material expulsion in the form of nanoparticles. Trenches and holes micromachined by the picosecond laser exhibited clean and smooth edges and non-thermal ablation mode for pulse repetition rates less than 250 kHz. However carbonaceous material and recast layer were noted in the machined region when the pulse repetition rate was increased 500 kHz that could be attributed to the interaction between air plasma and micro/nanoparticles. A comparison with femtosecond pulsed lasers shows the promise that picosecond lasers are more efficient and cost effective tools for creating sensor diaphragms and via holes in 4H-SiC.  相似文献   

8.
Femtosecond surface structure modifications are investigated under irradiation with laser pulses of 150 fs at 800 nm, on copper and silicon. We report sub-wavelength periodic structures formation (ripples) with a periodicity of 500 nm for both materials. These ripples are perpendicular to the laser polarization and can be obtained with only one pulse. The formation of these ripples corresponds to a fluence threshold of 1 J/cm2 for copper and 0.15 J/cm2 for silicon. We find several morphologies when more pulses are applied: larger ripples parallel to the polarization are formed with a periodicity of 1 μm and degenerate into a worm-like morphology with a higher number of pulses. In addition, walls of deep holes also show sub-wavelength and large ripples.  相似文献   

9.
Plasma polymerized tetrafluoroethylene (PPTFE) is shown to undergo efficient 248 nm excimer laser ablation. The principle difference between this material and the analogous polytetrafluoroethylene (PTFE), which results in only poor quality ablation, is PPTFE's much greater absorption coefficient (7×104 vs. 102 cm–1). A plot of the ablation depth per pulse versus incident fluence indicates that the threshold for significant ablation occurs near 50 mJ/cm2, and that approximately 0.7 m/pulse can be removed at 800 mJ/cm2. Near threshold, the ablation rate curve can be fit by a single Arrhenius-type exponential. This suggests that the removal process is at least partially governed by a photothermal process, similar to well-known laser induced thermal desorption experiments. In the very low fluence regime between 10 and 30 mJ/cm2, small removal rates are measured in a process likely dominated by non-thermal ablation. The paper concludes with a discussion of the high quality, micron-size features that can be directly patterned into PPTFE surfaces.  相似文献   

10.
In this paper, we investigated the mechanism of crystallization induced by femtosecond laser irradiation for an amorphous Si (a-Si) thin layer on a crystalline Si (c-Si) substrate. The fundamental, SHG, THG wavelength of a Ti:Sapphire laser was used for the crystallization process. To investigate the processed areas we performed Laser Scanning Microscopy (LSM), Transmission Electron Microscopy (TEM) and Imaging Pump-Probe measurements. Except for 267 nm femtosecond laser irradiation, the crystallization occurred well. The threshold fluences for the crystallization using 800 nm and 400 nm femtosecond laser irradiations were 100 mJ/cm2 and 30 mJ/cm2, respectively. TEM observation revealed that the crystallization occurred by epitaxial growth from the boundary surface between the a-Si layer and c-Si substrate. The melting depths estimated by Imaging Pump-Probe measurements became shallower when the shorter wavelength was used.  相似文献   

11.
The surface morphology of the ablation craters generated in LiNbO3 by 130 fs laser pulses at 800 nm has been investigated by AFM/SNOM microscopy. The single pulse fluence corresponding to the ablation threshold has been estimated to be ≈1.8 J/cm2.A complex structure including random cone-shaped protrusions is observed inside the ablated crater. The scale of the protrusion spacing is in the submicron range and the heights are typically of a few tens of nanometers. At and outside the crater rim a novel quasi-periodic wave-like topography pattern is observed in both types of microscopy techniques. The average wavelength, that is slightly dependent on pulse fluence, is (500-800 nm) comparable to the light wavelength. This novel topography feature keeps a close similarity with a Fresnel diffraction pattern by an absorbing circular obstacle or impact wave pattern produced by a combination of heat and shock wave (resemble that of impact crater). It is proposed that the obstacle is associated to the strongly nonlinear multiphoton absorption at the peak of the pulse profile. The energy deposited by nonlinear absorption of such profile causes ablation of both the crater and the rippled structure.  相似文献   

12.
Laser fluence, repetition rate and pulse duration effects on paint ablation   总被引:1,自引:0,他引:1  
The efficiency (mm3/(J pulse)) of laser ablation of paint was investigated with nanosecond pulsed Nd:YAG lasers (λ = 532 nm) as a function of the following laser beam parameters: pulse repetition rate (1-10,000 Hz), laser fluence (0.1-5 J/cm2) and pulse duration (5 ns and 100 ns). In our study, the best ablation efficiency (η ≅ 0.3 mm3/J) was obtained with the highest repetition rate (10 kHz) at the fluence F = 1.5 J/cm2. This ablation efficiency can be associated with heat accumulation at high repetition rate, which leads to the ablation threshold decrease. Despite the low thermal diffusivity and the low optical absorption of the paint (thermal confinement regime), the ablation threshold fluence was found to depend on the pulse duration. At high laser fluence, the ablation efficiency was lower for 5 ns pulse duration than for the one of 100 ns. This difference in efficiency is probably due to a high absorption of the laser beam by the ejected matter or the plasma at high laser intensity. Accumulation of particles at high repetition rate laser ablation and surface shielding was studied by high speed imaging.  相似文献   

13.
Diamond-like carbon (DLC) films were fabricated by pulsed laser ablation of a liquid target. During deposition process the growing films were exited by a laser beam irradiation. The films were deposited onto the fused silica using 248 nm KrF eximer laser at room temperature and 10−3 mbar pressure. Film irradiation was carried out by the same KrF laser operating periodically between the deposition and excitation regimes. Deposited DLC films were characterized by Raman scattering spectroscopy. The results obtained suggested that laser irradiation intensity has noticeable influence on the structure and hybridization of carbon atoms deposited. For materials deposited at moderate irradiation intensities a very high and sharp peak appeared at 1332 cm−1, characteristic of diamond crystals. At higher irradiation intensities the graphitization of the amorphous films was observed. Thus, at optimal energy density the individual sp3-hybridized carbon phase was deposited inside the amorphous carbon structure. Surface morphology for DLC has been analyzed using atomic force microscopy (AFM) indicating that more regular diamond cluster formation at optimal additional laser illumination conditions (∼20 mJ per impulse) is possible.  相似文献   

14.
Surface texturing of the metals, including steels, gained a new dimension with the appearance of femtosecond lasers. These laser systems enable highly precise modifications, which are very important for numerous applications of metals. The effects of a Ti:sapphire femtosecond laser with the pulse duration of 160 fs, operating at 775 nm wavelength and in two operational regimes - single pulse (SP) and scanning regime, on a high quality AISI 1045 carbon steel were studied. The estimated surface damage threshold was 0.22 J/cm2 (SP). Surface modification was studied for the laser fluences of 0.66, 1.48 and 2.37 J/cm2. The fluence of 0.66 J/cm2, in both working regimes, induced texturing of the material, i.e. formation of periodic surface structures (PSS). Their periodicity was in accordance with the used laser wavelength. Finally, changes in the surface oxygen content caused by ultrashort laser pulses were recorded.  相似文献   

15.
Single- and multi-shot ablation thresholds of gold films in the thickness range of 31-1400 nm were determined employing a Ti:sapphire laser delivering pulses of 28 fs duration, 793 nm center wavelength at 1 kHz repetition rate. The gold layers were deposited on BK7 glass by an electron beam evaporation process and characterized by atomic force microscopy and ellipsometry. A linear dependence of the ablation threshold fluence Fth on the layer thickness d was found for d ≤ 180 nm. If a film thickness of about 180 nm was reached, the damage threshold remained constant at its bulk value. For different numbers of pulses per spot (N-on-1), bulk damage thresholds of ∼0.7 J cm−2 (1-on-1), 0.5 J cm−2 (10-on-1), 0.4 J cm−2 (100-on-1), 0.25 J cm−2 (1000-on-1), and 0.2 J cm−2 (10000-on-1) were obtained experimentally indicating an incubation behavior. A characteristic layer thickness of Lc ≈ 180 nm can be defined which is a measure for the heat penetration depth within the electron gas before electron-phonon relaxation occurs. Lc is by more than an order of magnitude larger than the optical absorption length of α−1 ≈ 12 nm at 793 nm wavelength.  相似文献   

16.
Femtosecond laser micromilling of Si wafers   总被引:1,自引:0,他引:1  
Femtosecond laser micromilling of silicon is investigated using a regeneratively amplified 775 nm Ti:Sapphire laser with a pulse duration of 150 fs operating at 1 kHz repetition rate. The morphological observation and topological analysis of craters fabricated by single-shot laser irradiation indicated that the material removal is thermal in nature and there are two distinct ablation regimes of low fluence and higher fluence with logarithmical relations between the ablation depth and the laser fluence. Crater patterns were categorized into four characteristic groups and their formation mechanisms were investigated. Femtosecond laser micromilling of pockets in silicon was performed. The effect of process parameters such as pulse energy, translation speed, and the number of passes on the material removal rate and the formation of cone-shaped microstructures were investigated. The results indicate that the microstructuring mechanism has a strong dependence on the polarization, the number of passes and laser fluence. The optimal laser fluence range for Si micromilling was found to be 2-8 J/cm2 and the milling efficiency attains its maximum between 10 and 20 J/cm2.  相似文献   

17.
Investigation of the process of nanohole formation on silicon surface mediated with near electromagnetic field enhancement in vicinity of gold particles is described. Gold nanospheres with diameters of 40, 80 and 200 nm are used. Irradiation of the samples with laser pulse at fluences below the ablation threshold for native Si surface, results in a nanosized surface modification. The nanostructure formation is investigated for the fundamental (λ = 800 nm, 100 fs) and the second harmonic (λ = 400 nm, 250 fs) of the laser radiation generated by ultrashort Ti:sapphire laser system. The near electric field distribution is analyzed by an Finite Difference Time Domain (FDTD) simulation code. The properties of the produced morphological changes on the Si surface are found to depend strongly on the polarization and the wavelength of the laser irradiation. When the laser pulse is linearly polarized the produced nanohole shape is elongated in the E-direction of the polarization. The shape of the hole becomes symmetrical when the laser radiation is circularly polarized. The size of the ablated holes depends on the size of the gold particles, as the smallest holes are produced with the smallest particles. The variation of the laser fluence and the particle size gives possibility of fabricating structures with lateral dimensions ranging from 200 nm to below 40 nm. Explanation of the obtained results is given on the basis simulations of the near field properties using FDTD model and Mie's theory.  相似文献   

18.
We use surface-femtosecond laser mass spectrometry to study the fragments/products formed when trinitrotoluene (TNT) is subjected to femtosecond laser pulse irradiation and to study the conditions under which TNT is removed from a solid surface. In surface-femtosecond laser mass spectrometry a compound is deposited on a solid substrate and is desorbed into vacuum by femtosecond irradiation forming a plume of ionized and neutral species. The positive or negative ions are then accelerated by an electric potential and allowed to drift in the field-free region of a time-of-flight mass spectrometer. The mass-to-charge ratio of each ion is obtained using the value of the accelerating field and the ion flight time. In this paper we report femtosecond laser mass spectra for the positive ions formed by desorbing TNT with 130 fs pulses centered at 800 nm for fluences ranging from 7 to 1.4 × 105 J/m2. The conditions under which TNT removal and ionization occur are also discussed.  相似文献   

19.
Conical nanobump arrays were generated on gold thin film processed by interfering femtosecond laser. The transition of the height and diameter as functions of fluence and pulse width was investigated. When the fluence was 87 mJ/cm2, the height and diameter were not so different at 350 fs or shorter pulse width. They decreased at longer pulse width, and no bump could be generated over 1.6 ps. The results suggest the decrease of size is due to the diffusion of electron to not-excited region, and due to heat conduction to not heated region or substrate, or change of absorbance of laser. At long pulse width of 2.4 ps and relatively higher fluence of 190 mJ/cm2, nanobump had liquid-like structure as a stop motion of a water drop.  相似文献   

20.
Surface relief gratings (SRG) and self-organized nano-structures induced by laser light at 157 nm on the fluoropolymer poly(2,2,2-trifluoroethyl methacrylate) (PTFEMA), films were obtained under well-controlled light exposure conditions. Regular and semi-regular spaced self-organized grating-like structures were created on polymeric films for ∼7.5-100 mJ/cm2 laser energy fluence. For lower laser fluence, the surface morphology of light exposed/non-exposed areas exhibited irregular-like structure morphologies, while polymer surface irradiation with energy fluence higher than 150 mJ/cm2 causes progressively fading out of the regular patterns. Under the specific experimental conditions, the SRG and self-organization patterning have their origin in the development of a surface thermal instability (Rayleigh's instability), which is resolved itself into regular patterns on the surface of the fluoropolymer film. The thermal instability is due to the explosive polymer surface photo-dissociation at 157 nm and the build up of longitudinal and periodic surface stress, which eventually create the SRG and the self-assembled structures on the polymer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号