首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cascaded nonlinear-optical transformation of high-power ultrashort light pulses in an ionizing gas medium involving supercontinuum generation, followed by a frequency conversion of this radiation in the field of femtosecond laser pulses with an intensity of 1014–1015 W/cm2 has been demonstrated. Parametric four-wave mixing is shown to allow a highly efficient spectral transformation and shaping of supercontinuum radiation. The maximum efficiency of a parametric frequency conversion of femtosecond laser pulses in an ionizing gas medium achieved under the conditions of our experiments is estimated as 1%.  相似文献   

2.
We report on the energy transfer and frequency upconversion spectroscopic properties of Er3+-doped and Er3+/Yb3+-codoped TeO2-ZnO-Na2O-PbCl2 halide modified tellurite glasses upon excitation with 808 and 978 nm laser diode. Three intense emissions centered at around 529, 546 and 657 nm, alongwith a very weak blue emission at 410 nm have clearly been observed for the Er3+/Yb3+-codoped halide modified tellurite glasses upon excitation at 978 nm and the involved mechanisms are explained. The quadratic dependence of fluorescence on excitation laser power confirms the fact that the two-photon contribute to the infrared to green-red upconversion emissions. And the blue upconversion at 410 nm involved a sequential three-photon absorption process.  相似文献   

3.
Tunable coherent VUV radiation from 115.8 to 116.9 nm has been produced by non-linear four-wave sum frequency mixing in a xenon-argon mixture. 116.5 nm light generated by this means has been used as the first step in a three color, doubly resonant ionization scheme for Kr. In the process of validating the system the xenon refractive index per atom (STP) at 116.5 nm has been determined to be (n(Xe) − 1)/NXe = −6.8(±0.8) × 10−23 cm3.  相似文献   

4.
Yong-Liang Li  Yuan Dong  Yan-Fei Lü 《Optik》2011,122(13):1125-1127
A design of laser-diode array (LDA) end-pumped Nd:YVO4 laser that generates simultaneous laser action at wavelengths 1064 and 1342 nm is presented. Using type-I critical phase matching (CPM) BiB3O6, 593.5 nm continuous-wave (cw) Orange-yellow laser is obtained by 1064 nm and 1342 nm in an intra-cavity sum-frequency mixing. The maximum laser output power of 3.62 W is obtained when an incident pump laser of 27.5 W is used. The optical-to-optical conversion is up to 13.2%. To the best of our knowledge, this is the highest conversion efficiency at 593.5 nm in an intra-cavity sum-frequency Nd:YVO4 laser.  相似文献   

5.
We reported an actively Q-switched, intracavity Nd3+:YVO4 self-Raman laser at 1176 nm with low threshold and high efficiency. From the extracavity frequency doubling by use of LBO nonlinear crystal, over 3.5 mW, 588 nm yellow laser is achieved. The maximum Raman laser output at is 182 mW with 1.8 W incident pump power. The threshold is only 370 mW at a pulse repetition frequency of 5 kHz. The optical conversion efficiency from incident to the Raman laser is 10%, and 1.9% from Raman laser to the yellow.  相似文献   

6.
Tunable near-infrared radiation has been generated in a rubidium titany1 phosphate (RTP) crystal by employing non-collinear difference-frequency mixing (DFM) technique. The input radiation sources are Nd:YAG laser radiation and its second harmonic pumped dye laser radiation. For the generation of 2.0 radiation, the maximum value of the conversion efficiency (quantum) obtained in the process is 49% from the dye (0.6945 μm) to the infrared (2.0 μm) radiation in the 7.9-mm-long crystal. The generated tunable mid-infrared radiation has been used to measure the number density, absorption cross-section and minimum detectable concentration of methane gas in its 2ν3 band in a multi-pass cell at 30.075 Torr pressure. The number density and column density of the methane molecules are found to be 1.068×1018 cm−3 and 3.02×1021 cm−2, respectively, whereas the minimum still-detectable concentration at 1.658 μm wavelength is estimated to be 4.523×1017/cm3.  相似文献   

7.
黄显玲  夏宗炬  邹英华 《物理学报》1990,39(9):1385-1392
利用Hg原子61S0—61D2和61S0—63D2双光子共振的四波差频(2ω1—ω3),获得了真空紫外相干辐射(ω4)。当入射光之一(ω3)波长调谐时,产生的真空紫外光也是调谐的,调谐范围为184.9-187.5nm.本文对非线性频率变换过程的机 关键词:  相似文献   

8.
Coherent radiation at 89.6 nm has been obtained through third-harmonic conversion of the 268.8 nm pulses in mercury vapors. Tunability of the fourth-harmonic frequency of the Nd: glass laser radiation to the 6s 1 S 0–8s 1 S 0 double quantum resonance of Hg atoms has been used for the resonant enhancement of the twelfth-harmonic output. Possibility to phase match the generated radiation and driving polarisation in pure vapors without employing of bufer gas has been demonstrated.  相似文献   

9.
uv vac=351.165 nm) of a ps 1 kHz Nd:YLF laser system is frequency tripled in xenon and mercury vapour. About 4×104 photons per pulse, i.e. 4×107 photons/s, are generated in xenon yielding a conversion efficiency of η=3×10-10. The unusual frequency tripling in xenon takes place in a positive dispersive wavelength region. It is shown that Kerr-induced dispersion in the atomic system and a fifth-order process rather than a third-order process can explain the frequency tripling. For comparison a four-wave mixing process is investigated in negative dispersive mercury vapour. Due to absorption of the generated VUV radiation in the autoionization region of mercury the observed effective efficiency is, in our experimental arrangement, even lower than in xenon. An analysis of the VUV generation with respect to absorption is given. Received: 1 September 1997  相似文献   

10.
High efficiency extra-cavity third harmonic generation (THG) of 355 nm has been developed. A laser diode (LD) end-pumped, acoustic-optical Q-switched Nd:YAG laser was used as the fundamental wave source. With an input pump power of 25 W, average power of 6.75 W at 1064 nm was generated with the repetition rate 12 kHz and pulse duration 10 ns. Using the extra-cavity frequency conversion of three critical phase match (CPM) LiB3O5 (LBO) crystals, 3.2 W third harmonic radiation at 355 nm was obtained. The optical-to-optical (1064 nm to 355 nm) conversion efficiency was up to 47.4%.  相似文献   

11.
The luminescence properties of Ba3Tb0.9Eu0.1(PO4)3 and Ba3Gd0.9Eu0.1(PO4)3 phosphors were studied for excitation over the 120-300 nm wavelength range. It is found that Tb3+, which exhibits a strong vacuum-ultraviolet (VUV) absorption band, provides sensitisation of Eu3+ emission in this host. This effect can be used to develop phosphors with enhanced conversion efficiency of the VUV radiation into visible light.  相似文献   

12.
Third-order nonlinear-optical properties of gold nanoparticles embedded in Al2O3, ZnO and SiO2 have been investigated by the Z-scan method at the wavelength of 532 nm using nanosecond Nd3+:YAG laser radiation. The nonlinear refractive index, nonlinear absorption coefficient, and the real and imaginary parts of the third-order nonlinear susceptibility are deduced. The results of the investigation of nonlinear refraction using the off-axis Z-scan configuration are presented and the mechanisms responsible for the nonlinear response are discussed. The prevailing influence of the electronic Kerr effect over the possible thermo-optical contribution is demonstrated.  相似文献   

13.
In the paper, a new way of intracavity frequency-tripled all-solid-state laser to generate continuous wave blue coherent radiation is firstly demonstrated. High-efficiency of continuous wave third harmonic generation using the approach of double-resonance at fundamental frequency and second harmonic is developed by insertion of one wedge prism for the phase control. The maximum output power at the wavelength of 447 nm, which was generated with two long LiB3O4 crystals by noncritical phase matching, is about 1.15 W with a beam quality factor of M2 of 1.05. From the experimental results, the generation of continuous wave blue light using this way with higher conversion efficiency can be achieved.  相似文献   

14.
We demonstrate the fabrication of fiber Bragg gratings using a novel high-repetition rate nanosecond Q-switched Nd:VO4 laser fifth harmonic (213 nm) source for the first time in boron and hydrogen-free, Ge doped fiber. Strong gratings are rapidly obtained with the phase mask technique in hydrogen-free B/Ge doped photosensitive fiber with relatively low average power (100 mW), as well as in standard Corning SMF28 fiber. The evolution of the refractive index change during UV-exposure is presented. Photosensitivity of fibers to the 213 nm light is compared to the fourth harmonic (266 nm) light, as well as picosecond 213 nm radiation and is shown to be significantly higher than both. We believe that the photosensitivity of SMF28 fiber is due to a single-photon rather than two-photon absorption process.  相似文献   

15.
A high-powered tunable terahertz wave (THz-wave) has been parametrically generated via a surface-emitted THz-wave parametric oscillator (TPO) pumped by a multi-longitudinal-mode Q-switched Nd:YAG laser. The effective parametric gain length was enlarged by employing two MgO:LiNbO3 crystals. The tunable THz-wave radiation from 0.8 to 2.8 THz was realized via varying phase-matching angle between the pump wave and the Stokes wave. The maximum THz-wave radiation was 173.9 nJ/pulse at 1.7 THz as the pump energy was 82 mJ, corresponding to an energy conversion efficiency of about 2.12 × 10−6 and a photon conversion efficiency of about 0.035%. The first-order, the second-order and the third-order Stokes waves were observed during the experiments.  相似文献   

16.
A diode-end-pumped passively Q-switched 912 nm Nd:GdVO4/Cr4+:YAG laser and its efficient intracavity frequency-doubling to 456 nm deep-blue laser were demonstrated in this paper. Using a simple V-type laser cavity, pulsed 912 nm laser characteristics were investigated with two kinds of Cr4+:YAG crystal as the saturable absorbers, which have the different initial transmissivity (TU) of 95% and 90% at 912 nm. When the TU = 95% Cr4+:YAG was used, as much as an average output power of 2.8 W 912 nm laser was achieved at an absorbed pump power of 34.0 W, and the pulse width and the repetition rate were ∼ 40.5 ns and ∼ 76.6 kHz, respectively. To the best of our knowledge, this is the highest average output power of diode-pumped passively Q-switched Nd3+-doped quasi-three-level laser. Employing a BiBO as the frequency-doubling crystal, 456 nm pulsed deep-blue laser was obtained with a maximum average output power of 1.2 W at a repetition rate ∼ 42.7 kHz.  相似文献   

17.
The efficiency of a coherent vacuum ultraviolet (VUV) source at 125 nm, based on two-photon resonant four-wave mixing in mercury vapor, has been enhanced by up to two orders of magnitude. This enhancement was obtained by locally heating a liquid mercury surface with a pulsed excimer laser, resulting in a high-density vapor plume in which the nonlinear interaction occurred. Energies up to 5 μJ (1 kW peak power) have been achieved while keeping the overall mercury cell at room temperature, avoiding the use of a complex heat pipe. We have observed a strong saturation of the VUV yield when peak power densities of the fundamental beams exceeded the GW/cm2 range, as well as a large intensity-dependent broadening (up to ∼ 30 cm-1) of the two-photon resonance. The source has potential applications for high-resolution interference lithography and photochemistry. PACS 42.65.Ky; 52.38.Mf  相似文献   

18.
Hydrogen Lyman-α radiation (121.56 nm) is important because it allows for the excitation and detection of ground-state hydrogen atoms by a one-photon process. The trapping of antihydrogen, recently reported by the ALPHA collaboration at CERN, has revived interest in Lyman-α lasers. In order to perform high precision tests of matter-antimatter symmetry violations or gravity-antimatter interactions with antihydrogen, laser cooling using the 1s ? 2p single photon transition is essential. Recent theoretical simulations predict that even with a pulsed Lyman-α source, laser cooling of antihydrogen would be possible. Here we describe the implementation of a high power vacuum-ultraviolet (VUV) laser at the Lyman-α transition of hydrogen. The VUV light was generated using a two-photon-resonant four-wave mixing process in a phase-matched mixture of krypton and argon. Two wavelengths (ω R → 202.31 and ω T → 602.56 nm) were mixed in a sum-difference scheme (ω VUV = 2ω R ? ω T ) with a two-photon resonance at (4s 24p 55p[1/2]0 ← 4s 24p 6(1S 0)) transition in Kr. With an Ar/Kr mixture of 3.9:1 we obtained 10 ns pulses of 0.1 μJ of energy at a repetition rate of 10 Hz.  相似文献   

19.
Up-conversion blue emissions of trivalent thulium ions in monoclinic KGd(WO4)2 single crystals at 454 and 479 nm are reported for a single pump laser source at 688 nm. We grew thulium-doped KGd(WO4)2 single crystals at several concentrations from 0.1% to 10%. We recorded a polarized optical absorption spectrum for the 3F2+3F3 energy levels of thulium at room temperature and low temperature (6 K). From the low temperature emission spectra we determined the splitting of the 3H6 ground state. The blue emissions are characterized as a function of the dopant concentration and temperature from 10 K to room temperature. To our knowledge, this is the first time that sequential two-photon excitation process (STEP) generated blue emissions in thulium-doped single crystals with a single excitation wavelength.  相似文献   

20.
The upconverted VUV (185 nm) and UV (230 and 260 nm) luminescence due to 5d-4f radiative transitions in Nd3+ ions doped into a LiYF4 crystal has been obtained under excitation by 351/353 nm radiation from a XeF excimer laser. The maximum upconversion efficiency, defined as the ratio of intensity for 5d-4f luminescence to overall intensity for 5d-4f and 4f-4f luminescence from the 4D3/2 Nd3+ level, has been estimated to be about 70% under optimal focusing conditions for XeF laser radiation. A redistribution of intensity between three main components of 5d-4f Nd3+ luminescence is observed under changing the excitation power density, which favors the most long-wavelength band (260 nm) at higher excitation density level. The effect is interpreted as being due to excited state absorption of radiation emitted. The upconverted VUV and UV luminescence from the high-lying 2F(2)7/2 4f level of Er3+ doped into a LiYF4 crystal has also been obtained under XeF-laser excitation the most intense line being at 280 nm from the spin-allowed transition to the 2H(2)11/2 4f level of Er3+, but the efficiency of upconversion for Er3+ emission is low, less than 5%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号