首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
The sound attenuation phenomena is investigated for a spin- 3/2 Ising model on the Bethe lattice in terms of the recursion relations by using the Onsager theory of irreversible thermodynamics. The dependencies of sound attenuation on the temperature (TT), frequency (ww), Onsager coefficient (γγ) and external magnetic field (HH) near the second-order (Tc)(Tc) and first-order (Tt)(Tt) phase transition temperatures are examined for given coordination numbers qq on the Bethe lattice. It is assumed that the sound wave couples to the order-parameter fluctuations which decay mainly via the order-parameter relaxation process, thus two relaxation times are obtained and which are used to obtain an expression for the sound attenuation coefficient (α)(α). Our investigations revealed that only one peak is obtained near TtTt and three peaks are found near TcTc when the Onsager coefficient is varied at a given constant frequency for q=3q=3. Fixing the Onsager coefficient and varying the frequency always leads to two peaks for q=3,4q=3,4 and 6 near TcTc. The sound attenuation peaks are observed near TtTt at lower values of external magnetic field, but as it increases the sound attenuation peaks decrease and eventually disappear.  相似文献   

2.
We introduce a network evolution process motivated by the network of citations in the scientific literature. In each iteration of the process a node is born and directed links are created from the new node to a set of target nodes already in the network. This set includes mm “ambassador” nodes and ll of each ambassador’s descendants where mm and ll are random variables selected from any choice of distributions plpl and qmqm. The process mimics the tendency of authors to cite varying numbers of papers included in the bibliographies of the other papers they cite. We show that the degree distributions of the networks generated after a large number of iterations are scale-free and derive an expression for the power-law exponent. In a particular case of the model where the number of ambassadors is always the constant mm and the number of selected descendants from each ambassador is the constant ll, the power-law exponent is (2l+1)/l(2l+1)/l. For this example we derive expressions for the degree distribution and clustering coefficient in terms of ll and mm. We conclude that the proposed model can be tuned to have the same power law exponent and clustering coefficient of a broad range of the scale-free distributions that have been studied empirically.  相似文献   

3.
We studied damage spreading in a Driven Lattice Gas (DLG) model as a function of the temperature TT, the magnitude of the external driving field EE, and the lattice size. The DLG model undergoes an order–disorder second-order phase transition at the critical temperature Tc(E)Tc(E), such that the ordered phase is characterized by high-density strips running along the direction of the applied field; while in the disordered phase one has a lattice-gas-like behavior. It is found that the damage always spreads for all the investigated temperatures and reaches a saturation value DsatDsat that depends only on TT. DsatDsat increases for T<Tc(E=∞)T<Tc(E=), decreases for T>Tc(E=∞)T>Tc(E=) and is free of finite-size effects. This behavior can be explained as due to the existence of interfaces between the high-density strips and the lattice-gas-like phase whose roughness depends on TT. Also, we investigated damage spreading for a range of finite fields as a function of TT, finding a behavior similar to that of the case with E=∞E=.  相似文献   

4.
5.
Generally, in literature, easy-axis single ion anisotropy and easy-axis exchange anisotropy was treated in indistinct way. In this work we propose to perform a comparative study of the effects of these two easy-axis anisotropies on the behavior of the magnetization and the critical temperature (Tc)(Tc) in the 2D classical Heisenberg antiferromagnetic model. In order to study the low-temperature thermodynamics of this model, we should consider the contribution of anisotropic spin waves, using a self-consistent harmonic approximation (SCHA) theory. We compare the predictions of SCHA with numerical simulations on L×LL×L square lattices using Monte Carlo (MC) simulations, which include effects due to all thermodynamically allowed excitations. Our SCHA results are in good agreement with our MC simulations results and have shown that the strong KK limit gives two different Ising-like behavior. In the exchange anisotropic case, the dependence of TcTc on anisotropic parameter KK becomes linear and in the single-ion anisotropic case, TcTc becomes independent of KK. Also, using MC simulations and finite size scaling, we show that the critical exponents in the two anisotropic case are compatible with the 2D Ising values α=0.125α=0.125 and γ=1.75γ=1.75.  相似文献   

6.
In Single Gate HEMT (SGHEMT) shortening of gate length (Lg)(Lg) below 100 nm leads to reduction in Transconductance (gm)(gm), which reduces the unloaded voltage gain (gm/gd)(gm/gd) of the device, thereby reducing the maximum frequency of oscillation (fmax)(fmax). The main reason for this reduction in gmgm with LgLg in the Single Gate HEMT (SGHEMT) is its inability to maintain the desired channel aspect ratio (αα). At such a miniaturization level, αα not only depends on the channel depth (d)(d) but also on the channel thickness (dc)(dc) of the device [5]. Moreover, the variation of dcdc may switch the device characteristics from quantum regime to classical regime  and . The Double Gate HEMT (DGHEMT)  and  has emerged as a solution for further reduction in LgLg and provides enhancements over SGHEMT by virtue of its double gate and also for same dcdc due to double heterojunctions, which virtually increases the value of αα. In the present work, extensive simulation work has been carried out using ATLAS device simulator [35] in order to study the effect of dcdc and LgLg on DGHEMT and SGHEMT. An analytical model has also been proposed for SGHEMT and DGHEMT to incorporate the effect of variation of dcdc and LgLg.  相似文献   

7.
Using a simple Landau model, we discuss the different possibilities of generating magnetic effects at a second-order transition for films. Varying the sample size dd and/or surface coupling γγ one can decrease or increase substantially the surface critical temperature TsTs and the saturation magnetization MsMs. In the case of γ>0γ>0, MsMs and TsTs decrease from the bulk values as the film thickness is reduced. These theoretical results are in nice agreement with the experimental data on superconducting MgB2MgB2 thin films. By contrast, for γ<0γ<0, an enhancement of both quantities is expected. This extraordinary transition has rarely been observed experimentally and, usually, the situation is far from being clear. We analyze a new experiment on NiFe2O4NiFe2O4 ultra-thin films, where a very strong enhancement of the saturation magnetization is observed.  相似文献   

8.
We analyse the phase diagram of a quantum mean spherical model in terms of the temperature TT, a quantum parameter gg, and the ratio p=−J2/J1p=J2/J1, where J1>0J1>0 refers to ferromagnetic interactions between first-neighbour sites along the dd directions of a hypercubic lattice, and J2<0J2<0 is associated with competing antiferromagnetic interactions between second neighbours along m≤dmd directions. We regain a number of known results for the classical version of this model, including the topology of the critical line in the g=0g=0 space, with a Lifshitz point at p=1/4p=1/4, for d>2d>2, and closed-form expressions for the decay of the pair correlations in one dimension. In the T=0T=0 phase diagram, there is a critical border, gc=gc(p)gc=gc(p) for d≥2d2, with a singularity at the Lifshitz point if d<(m+4)/2d<(m+4)/2. We also establish upper and lower critical dimensions, and analyse the quantum critical behavior in the neighborhood of p=1/4p=1/4.  相似文献   

9.
The ideality factor nn and the barrier height ΦapΦap of the sputtered Ni/p-InP Schottky diodes have been calculated from their experimental Current–voltage (I–V)(IV) characteristics in the temperature range of 60–400 K with steps of 10 K. The nn and ΦapΦap values for the device have been obtained as 1.27 and 0.87 eV at 300 K and 1.13 and 0.91 eV at 400 K, respectively. The nn values larger than unity at high temperatures indicate the presence of a thin native oxide layer at the semiconductor/metal interface. The barrier height (BH) has been assumed to be bias dependent due to the presence of an interfacial layer and interface states located at the interfacial layer-semiconductor interface. Interfacial layer-thermionic emission current mechanism has been fitted to experimental I–VIV data by considering the bias-dependence of the BH at each temperature. The best fitting values of the series resistance RsRs and interface state density NsNs together with the bias-dependence of the BH have been used at each temperature, and the RsRs and NsNs versus temperature plots have been drawn. It has been seen that the experimental and theoretical forward bias I–VIV data are in excellent agreement with each other in the temperature range of 60–400 K. It has been seen that the RsRs and NsNs values increase with a decrease in temperature, confirming the results in the literature.  相似文献   

10.
We have studied the anisotropic two-dimensional nearest-neighbor Ising model with competitive interactions in both uniform longitudinal field HH and transverse magnetic field ΩΩ. Using the effective-field theory (EFT) with correlation in cluster with N=1N=1 spin we calculate the thermodynamic properties as a function of temperature with values HH and ΩΩ fixed. The model consists of ferromagnetic interaction JxJx in the xx direction and antiferromagnetic interaction JyJy in the yy direction, and it is found that for H/Jy∈[0,2]H/Jy[0,2] the system exhibits a second-order phase transition. The thermodynamic properties are obtained for the particular case of λ=Jx/Jy=1λ=Jx/Jy=1 (isotropic square lattice).  相似文献   

11.
The effects of dipolar interactions on the magnetization behaviors and magnetic properties of the nanocomposite magnets have been studied by micromagnetic simulations. Numerical results show that the dipolar interaction plays an important role during the demagnetization process, especially in the magnets with large soft-phase content vsvs. For the isotropic nanocomposites, the remanence enhancement can be controlled through adjustments of the grain size D   and vsvs. However, the appearance of magnetic vortex state leads to a very low remanence in the magnets with large D   and vsvs. The dependence of coercivity on D   and vsvs can be attributed to the exchange-induced magnetization reversal near the grain boundaries and the low nucleation field of soft phase, respectively. For the anisotropic nanocomposites, the reduced remanence mrmr is equal to 1.01.0 for the magnets with small D   or with low vsvs. However, mrmr decreases with increasing vsvs for the magnet with large D   due to the influence of dipolar interactions. The difference between the calculated coercivity HcHc with and without considering dipolar interaction shows that the dipolar interaction plays a more important role during the magnetization reversal in the soft phase than that in the hard phase. The maximum calculated energy product of the isotropic nanocomposites is only about 40 MGOe due to the conflicting relation between remanence and coercivity, while that of the anisotropic nanocomposites is 112 MGOe. This reminds us that the alignment of hard grain is important to obtain high performance.  相似文献   

12.
We have measured the thickness dependence of the superconducting critical temperature, Tc(dBi)Tc(dBi), in amorphous Bi/Sb films patterned with a regular array of holes as well as nanoscale thickness variations. We find that the mean field TcTc is suppressed relative to simultaneously produced unstructured films of the same thickness. Surprisingly, however, the functional form for Tc(dBi)Tc(dBi), remains unaffected. The role of the thickness variations in suppressing TcTc is compared to the role of the holes, through parameterization of the surface, as measured through AFM/SEM and a proximity effect calculation. These results suggest that these two nanoscale modifications suppress TcTc about equally and are consistent with TcTc being determined on a microscopic length scale.  相似文献   

13.
We consider a Schrödinger-type differential expression HV=∇∇+VHV=+V, where ∇ is a Hermitian connection on a Hermitian vector bundle EE over a complete Riemannian manifold (M,g)(M,g) with metric gg and positive smooth measure dμdμ, and VV is a locally integrable section of the bundle of endomorphisms of EE. We give a sufficient condition for mm-accretivity of a realization of HVHV in L2(E)L2(E).  相似文献   

14.
We study reduction of generalized complex structures. More precisely, we investigate the following question. Let JJ be a generalized complex structure on a manifold MM, which admits an action of a Lie group GG preserving JJ. Assume that M0M0 is a GG-invariant smooth submanifold and the GG-action on M0M0 is proper and free so that MG?M0/GMG?M0/G is a smooth manifold. Under what condition does JJ descend to a generalized complex structure on MGMG? We describe a sufficient condition for the reduction to hold, which includes the Marsden–Weinstein reduction of symplectic manifolds and the reduction of the complex structures in Kähler manifolds as special cases. As an application, we study reduction of generalized Kähler manifolds.  相似文献   

15.
We study the oil displacement and production behavior in an isothermal thin layered reservoir model subjected to water flooding. We use the CMG’s (Computer Modelling Group  ) numerical simulators to solve mass balance equations. The influences of the viscosity ratio (m≡μoil/μwatermμoil/μwater) and the inter-well (injector-producer) distance rr on the oil production rate C(t)C(t) and the breakthrough time tbrtbr are investigated. Two types of reservoir configuration are used, namely one with random porosities and another with a percolation cluster structure. We observe that the breakthrough time follows a power-law of mm and rr, tbr∝rαmβtbrrαmβ, with α=1.8α=1.8 and β=−0.25β=0.25 for the random porosity type, and α=1.0α=1.0 and β=−0.2β=0.2 for the percolation cluster type. Moreover, our results indicate that the oil production rate is a power law of time. In the percolation cluster type of reservoir, we observe that P(t)∝tγP(t)tγ, with γ=−1.81γ=1.81, where P(t)P(t) is the time derivative of C(t)C(t). The curves related to different values of mm and rr may be collapsed suggesting a universal behavior for the oil production rate.  相似文献   

16.
We demonstrate the emergence of non-Abelian fusion rules for excitations of a two dimensional lattice model built out of Abelian degrees of freedom. It can be considered as an extension of the usual toric code model on a two dimensional lattice augmented with matter fields. It consists of the usual C(Zp)C(Zp) gauge degrees of freedom living on the links together with matter degrees of freedom living on the vertices. The matter part is described by a nn dimensional vector space which we call HnHn. The ZpZp gauge particles act on the vertex particles and thus HnHn can be thought of as a C(Zp)C(Zp) module. An exactly solvable model is built with operators acting in this Hilbert space. The vertex excitations for this model are studied and shown to obey non-Abelian fusion rules. We will show this for specific values of nn and pp, though we believe this feature holds for all n>pn>p. We will see that non-Abelian anyons of the quantum double of C(S3)C(S3) are obtained as part of the vertex excitations of the model with n=6n=6 and p=3p=3. Ising anyons are obtained in the model with n=4n=4 and p=2p=2. The n=3n=3 and p=2p=2 case is also worked out as this is the simplest model exhibiting non-Abelian fusion rules. Another common feature shared by these models is that the ground states have a higher symmetry than ZpZp. This makes them possible candidates for realizing quantum computation.  相似文献   

17.
We discuss space-time symmetric Hamiltonian operators of the form H=H0+igHH=H0+igH, where H0H0 is Hermitian and gg real. H0H0 is invariant under the unitary operations of a point group GG while HH is invariant under transformation by elements of a subgroup GG of GG. If GG exhibits irreducible representations of dimension greater than unity, then it is possible that HH has complex eigenvalues for sufficiently small nonzero values of gg. In the particular case that HH is parity-time symmetric then it appears to exhibit real eigenvalues for all 0<g<gc0<g<gc, where gcgc is the exceptional point closest to the origin. Point-group symmetry and perturbation theory enable one to predict whether HH may exhibit real or complex eigenvalues for g>0g>0. We illustrate the main theoretical results and conclusions of this paper by means of two- and three-dimensional Hamiltonians exhibiting a variety of different point-group symmetries.  相似文献   

18.
We introduce the Conditional Mutual Information (CMI) for the estimation of the Markov chain order. For a Markov chain of KK symbols, we define CMI of order mm, Ic(m)Ic(m), as the mutual information of two variables in the chain being mm time steps apart, conditioning on the intermediate variables of the chain. We find approximate analytic significance limits based on the estimation bias of CMI and develop a randomization significance test of Ic(m)Ic(m), where the randomized symbol sequences are formed by random permutation of the components of the original symbol sequence. The significance test is applied for increasing mm and the Markov chain order is estimated by the last order for which the null hypothesis is rejected. We present the appropriateness of CMI-testing on Monte Carlo simulations and compare it to the Akaike and Bayesian information criteria, the maximal fluctuation method (Peres–Shields estimator) and a likelihood ratio test for increasing orders using ??-divergence. The order criterion of CMI-testing turns out to be superior for orders larger than one, but its effectiveness for large orders depends on data availability. In view of the results from the simulations, we interpret the estimated orders by the CMI-testing and the other criteria on genes and intergenic regions of DNA chains.  相似文献   

19.
20.
As a calcium oscillations system is in steady state, the effects of colored noise and noise delay on the system is investigated using stochastic simulation methods. The results indicate that: (1) the colored noise can induce coherence bi-resonance phenomenon. (2) there exist three peaks in the R–τ0Rτ0 (RR is the reciprocal coefficient of variance, and τ0τ0 is the self-correlation time of the colored noise) curves. For the same noise intensity Q=1Q=1, the Gaussian colored noise can induce calcium spikes but the white noise cannot do this. (3) the delay time can improve noise induced spikes regularity as τ0τ0 is small, and RR has a significant minimum with increasing ττ as τ0τ0 is large. (4) large values of ζζ reduce noise induced spikes regularity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号