首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 870 毫秒
1.
2.
Measurements are performed to study the electron impact energy dependence of doubly differential bremsstrahlung yields (DDBY) and of characteristic Ti Kα line yields produced from sub-relativistic electrons (10–25 keV) colliding with a thick Ti (Z = 22) target. The emitted radiation is detected by a Si-PIN photo-diode detector with energy resolution (FWHM) of 180 eV at 5.9 keV. The measured data of DDBY are compared with the results predicted by Monte-Carlo (MC) simulations using the general purpose PENELOPE code. A reasonable agreement is found between experimental and simulation results within the experimental uncertainty of measurements of 12%. Characteristic Ti Kα yields are obtained for the considered impact energy range and they are compared with the existing theoretical results. A good agreement is found between the present measurements and the theoretical calculations. Furthermore, data are presented for impact energy dependence of the ratio Kα/(Kα+ Kβ) of a thick Ti target under impact of 10–25 keV electrons. The ratio shows a very weak dependence on impact energy in the studied range. The average value of the ratio is found to be 0.881 ± 0.003.  相似文献   

3.
Doppler profile spectroscopy and Compton-to-peak ratio analysis have been used to study the positronium (Ps) emission from the Kapton surface as a function of the positron implantation energy E.Two different positions for the sample have been performed in the experiment.In the first case the sample and the Ge-detector are perpendicular to the positron beam. With this geometry the emission of para-positronium (p-Ps) is detected as a narrow central peak.In the second case, by rotating the sample 45° with respect to the beam axis, the emission of p-Ps is detected as a blue-shifted fly away peak. The implantation of the positrons is described by the Makhov profile, where we used the modified median implantation for polymers as given by Algers et al. [J. Algers, P. Sperr, W. Egger, G. Kögel, F.H.J. Maurer, Phys. Rev. B 67 (2003) 125404].Thermalised positrons can diffuse to the surface and may pick up an electron to be emitted as Ps. We found a thermal and or epithermal positron diffusion length L+ = 5.43 ± 0.71 nm and L+ = 5.51 ± 0.28 nm correspondingly for both cases, which is much more than the one found by Brusa et al. [R.S. Brusa, A. Dupasquier, E. Galvanetto, A. Zecca, Appl. Phys. A 54 (1992) 233]. The respective efficiency for the emission of Ps by picking up an electron from the surface is found to be fpu = 0.247 ± 0.012 and fpu = 0.156 ± 0.003.  相似文献   

4.
The Coster-Kronig (CK) enhancement effect was measured for L3 subshell X-rays using the experimental Lα X-ray production cross-section, the fraction of Lα X-rays, L3 subshell fluorescence yields and L3 subshell photoionisation cross-section. The samples were excited by gamma-rays with 59.5 keV energy from a 75 mCi radioisotope source and L X-rays emitted from samples were counted by a Si(Li) detector with resolution 155 eV at 5.96 keV. Variation of enhancement effect of CK transition of L3 X-rays of La and Ce compounds was measured to be more than that of Ba. Ba has a partially filled 6s orbital whereas La and Ce have partially filled 5d and 4f orbitals, respectively.  相似文献   

5.
Preparation and characterization of CdS/Si coaxial nanowires   总被引:1,自引:0,他引:1  
CdS/Si coaxial nanowires were fabricated via a simple one-step thermal evaporation of CdS powder in mass scale. Their crystallinities, general morphologies and detailed microstructures were characterized by using X-ray diffraction, scanning electron microscope, transmission electron microscope and Raman spectra. The CdS core crystallizes in a hexagonal wurtzite structure with lattice constants of a=0.4140 nm and c=0.6719 nm, and the Si shell is amorphous. Five Raman peaks from the CdS core were observed. They are 1LO at 305 cm−1, 2LO at 601 cm−1, A1-TO at 212 cm−1, E1-TO at 234 cm−1, and E2 at 252 cm−1. Photoluminescence measurements show that the nanowires have two emission bands around 510 and 590 nm, which originate from the intrinsic transitions of CdS cores and the amorphous Si shells, respectively.  相似文献   

6.
The absoluteK-ionization cross sections of Ti and Ni by electron impact (impact energy ≦50 keV) was measured detecting the X-rays emitted by thin solid film targets of known mass thickness with a flow proportional counter. The experimental method, especially the correction procedures and the measurements are described, the results compared with calculations in different theoretical approaches. For impact energies aboveE 0/E K>1.5 (E K=K-shell ionization energy) a systematic deviation of about +20% occurs in comparison with the best agreeing calculations of M.R.H. Rudge and S.B. Schwartz. A fit to Drawin's empirical formula reveals that the measurements are approximated better than ±10 % within the range of comparison.  相似文献   

7.
In this work an analysis of experimental and theoretical data associated with the scattering and attenuation of electrons in the Pt(1 1 1) and Cu(1 1 1) crystalline samples is presented. The information about the crystalline structure of the first few atomic layers was obtained by the directional elastic peak electron spectroscopy (DEPES) at the primary electron beam energies Ep from 1.5 keV to 2.0 keV. The comparison of the experimental and theoretical DEPES distributions indicates a qualitative agreement between experiment and theory. The relative signal values associated with the intensity maxima were found to be different. The latter effect suggest that the electron attenuation in the crystalline samples can have an anisotropic character. A qualitative analysis of the characteristic pattern around the [1 1 1] direction concerning the calculation of the scattering factors was performed. The collective scattering of electrons by atoms located around the threefold symmetry axis resulting in the so called ring focusing effect is discussed.  相似文献   

8.
Si doped and undoped nanocrystalline aluminum nitride thin films were deposited on various substrates by direct current sputtering technique. X-ray diffraction analysis confirmed the formation of phase pure hexagonal aluminum nitride with a single peak corresponding to (1 0 0) reflection of AlN with lattice constants, a = 0.3114 nm and c = 0.4986 nm. Energy dispersive analysis of X-rays confirmed the presence of Si in the doped AlN films. Atomic force microscopic studies showed that the average particle size of the film prepared at substrate temperature 200 °C was 9.5 nm, but when 5 at.% Si was incorporated the average particle size increased to ∼21 nm. Field emission study indicated that, with increasing Si doping concentration, the emission characteristics have been improved. The turn-on field (Eto) was 15.0 (±0.7) V/μm, 8.0 (±0.4) V/μm and 7.8 (±0.5) V/μm for undoped, 3 at.% and 5 at.% Si doped AlN films respectively and the maximum current density of 0.27 μA/cm2 has been observed for 5 at.% Si doped nanocrystalline AlN film. It was also found that the dielectric properties were highly dependent on Si doping.  相似文献   

9.
Luminescence characteristics and surface chemical changes of nanocrystalline Mn2+ doped ZnAl2O4 powder phosphors are presented. Stable green cathodoluminescence (CL) or photoluminescence (PL) with a maximum at ∼512 nm was observed when the powders were irradiated with a beam of high energy electrons or a monochromatic xenon lamp at room temperature. This green emission can be attributed to the 4T1 → 6A1 transitions of the Mn2+ ion. Deconvoluted CL spectra resulted in two additional emission peaks at 539 and 573 nm that may be attributed to vibronic sideband and Mn4+ emission, respectively. The luminescence decay of the Mn2+ 512 nm emission under 457 nm excitation is single exponential with a lifetime of 5.20 ± 0.11 ms. Chemical changes on the surface of the ZnAl2O4:Mn2+ phosphor during prolonged electron beam exposure were monitored using Auger electron spectroscopy. The X-ray photoelectron spectroscopy (XPS) was used to determine the chemical composition of the possible compounds formed on the surface as a result of the prolonged electron beam exposure. The XPS data suggest that the thermodynamically stable Al2O3 layer was formed on the surface and is possibly contributing to the CL stability of ZnAl2O4:Mn phosphor.  相似文献   

10.
Zn1−xCuxO thin films (x=0, 1.0, 3.0, 5.0%) are prepared on quartz substrate by sol–gel method. The structure and morphology of the samples are investigated by X-ray diffraction (XRD) and atomic force microscopy (AFM). The results show that Cu ions were effectively penetrated into the ZnO crystal lattices with substitutional and interstitial impurities to form stable solid solutions without changing the polycrystalline wurtzite structure. Two peaks at 420 nm (2.95 eV, violet), 485 nm (2.56 eV, blue) have been observed from the photoluminescence (PL) spectra of the samples. It is concluded that the violet peak may correspond to the exciton emission; the blue emission corresponds to the electron transition from the bottom of the conduction band to the acceptor level of zinc vacancy. The optical test shows that the optical band gap Eg is decreased with the increase amount of Cu doping in ZnO. The band gap decrease from 3.40 eV to 3.25 eV gradually. It is also found that the transmission rate is increased rapidly with the increase of Cu ions concentration.  相似文献   

11.
Photoemission spectroscopy at high energies can be used to probe bulk electronic states. We used a specially designed high-voltage retarding lens and a commercial Perkin-Elmer PHI 10-360 hemispherical electron analyzer to investigate the core and valence band region of Au, YBa2Cu3O7−δ and highly oriented pyrolytic graphite samples with hard X-rays in the energy range 5-14.5 keV. The overall instrumental resolution obtained at 8 keV was 218 meV. The photo ionization cross-sections for Au 5d and 6s excitations were determined experimentally. In comparison with published calculations for atomic cross-sections neglecting corrections for angular anisotropy, the values we find are twice as large for the 5d and an order of magnitude larger for the 6s (conduction band) level. Our results demonstrate the feasibility of bulk sensitive valence band spectroscopy with high resolution at high brilliance X-ray sources such as the ESRF. The measured cross-sections provide important input for improving current theoretical models.  相似文献   

12.
The SrS:Ce/ZnS:Mn phosphor blends with various combination viz 75:25, 50:50 and 25:75 were assign to generate the white-light emission using near-UV and blue-light emitting diodes (LED) as an excitation source. The SrS:Ce exhibits strong absorption at 427 nm and the corresponding intense emission occurs at 480 and 540 nm due to electron transition from 5d(2D)−4f(2F5/2, 7/2) of Ce3+ ion as a result of spin-orbit coupling. The ZnS:Mn excited under same wavelength shows broad emission band with λmax=582 nm originates due to 3d (4G−6S) level of Mn2+. Photoluminescence studies of phosphor blend excited using near-UV to blue light confirms the emitted radiation varies from cool to warm white light in the range 430-600 nm, applicable to LED lightings. The CIE chromaticity coordinate values measured using SrS:Ce/ZnS:Mn phosphor blend-coated 430 nm LED pumped phosphors in the ratio 75:25, 50:50 and 25:75 are found to be (0.235, 0.125), (0.280, 0.190) and (0.285, 0.250), respectively.  相似文献   

13.
The methodology of characterizing electronic structure in dielectric materials will be presented in detail. Energy distribution of the electrons emitted from dielectric materials by the Auger neutralization of ions is measured and rescaled for Auger self-convolution, which is restructured from the energy distribution of the emitted electrons. The Fourier transform is very effective for obtaining the density of states from the Auger self-convolution. The MgO layer is tested as an example of this new measurement scheme. The density of states in the valence band of the MgO layer is studied by measuring the energy distribution of the emitted electrons for MgO crystal with three different orientations of (111), (100) and (110). The characteristic energy of ?0 corresponding to the peak density of the states in the band is determined, showing that the (111) orientation has a shallow characteristic energy ?0 = 7.4 eV, whereas the (110) orientation has a deep characteristic energy ?0 = 9.6 eV, consistent with the observed coefficient γ of the secondary electron emission for MgO crystal. Electronic structure in new functional nano-films spayed over MgO layer is also characterized. It is therefore demonstrated that secondary electron emission by the Auger neutralization of ions is highly instrumental for the determination of the density of states in the valence band of dielectric materials. This method simultaneously determines the valence band structure and the coefficient γ of the secondary electron emission, which plays the most important role in the electrical breakdown phenomena.  相似文献   

14.
We have used deep level transient spectroscopy (DLTS), and Laplace-DLTS to investigate the defects created in antimony doped germanium (Ge) by sputtering with 3 keV Ar ions. Hole traps at EV+0.09 eV and EV+0.31 eV and an electron trap at EC−0.38 eV (E-center) were observed soon after the sputtering process. Room temperature annealing of the irradiated samples over a period of a month revealed a hole trap at EV+0.26 eV. Above room temperature annealing studies revealed new hole traps at EV+0.27 eV, EV+0.30 eV and EV+0.40 eV.  相似文献   

15.
In this work, we improved the field-emission properties of a screen-printed single-wall carbon-nanotube (SWCNT) film by applying a strong electrostatic field during the drying process after the printing. By applying the strong field, more tips of SWCNTs could emerge from the screen-printed film and turn somewhat toward the erecting direction because of the repulsive force among the SWCNTs. The field-emission properties of the film were thus improved obviously. The improved field emitters sample has low electron emission turn-on field (Eto = 1.22 V/μm), low electron emission threshold field (Eth = 2.32 V/μm) and high brightness with good uniformity and stability. The lowest operating field of the improved sample is below 1.0 V/μm and its optimum current density exceeds 3.5 mA/cm2.  相似文献   

16.
Deep level transient spectroscopy (DLTS) and Laplace-DLTS (L-DLTS) have been used to investigate defects in an n-type GaAs before and after exposure to a dc hydrogen plasma (hydrogenation). DLTS revealed the presence of three prominent electron traps in the material in the temperature range 20-300 K. However, L-DLTS with its higher resolution enabled the splitting of two narrowly spaced emission rates. Consequently four electron traps at, EC—0.33 eV, EC—0.36 eV, EC—0.38 eV and EC—0.56 eV were observed in the control sample. Following hydrogenation, all these traps were passivated with a new complex (presumably the M3), emerging at EC—0.58 eV. Isochronal annealing of the passivated material between 50 and 300 °C, revealed the emergence of a secondary defect, not previously observed, at EC—0.37 eV. Finally, the effect of hydrogen passivation is completely reversed upon annealing at 300 °C, as all the defects originally observed in the reference sample were recovered.  相似文献   

17.
The energy absorbed in thin films of selected materials bombarded by x rays emitted in the braking of low-energy electrons (E 0<500 keV) in converters with various atomic numbers (Z=29–73) is calculated by the Monte Carlo method. The program takes into account both of the K-shell ionization mechanisms that lead to emission of characteristic photons as a result of electron impact and as a result of the photoelectric effect, and the characteristic radiation is shown to make a large contribution to the absorbed energy in thin films. Calculations show that the proper choice of material and thickness of the converter affords a two-to fivefold increase in the energy of the x radiation absorbed in thin films of semiconductor materials. Zh. Tekh. Fiz. 68, 99–101 (November 1998)  相似文献   

18.
Escape probability and mean escape depth λe of emitted electrons are determined as a function of attenuation length λa of excited electrons, their initial energy En, and the height of the surface barrier χ. A variable energy loss parameter permits to apply the proposed model to different kinds of electron emission, including the energy loss free Auger and ESCA electrons. An analytical expression was found correlating the internal energy distribution of excited electrons and the external energy distribution of emitted electrons. By means of this excitation energies of secondary electrons and exoelectrons were determined.  相似文献   

19.
Effective atomic numbers for CuCoNi alloys against changing Ni contents were measured in the X-ray energy range from 15.746 to 40.930 keV. The gamma rays emitted a 241Am point source have been send on absorbers to be used transmission arrangement. The X-rays were counted by a Si(Li) detector with a resolution of 160 eV at 5.9 keV. The compositions of the Ni films were determined to be 0.03, 0.47, 0.62, 1.23, 1.22 and 1.6 by a scanning electron microscopy in CuCoNi alloys prepared against changing Ni contents. CoCuNi alloy films were prepared with an electrodeposition technique. Also, the total effective atomic numbers of each alloy were estimated using mixture rule. The measured values were compared with estimated values for alloys.  相似文献   

20.
The thermal evolution of deuterium from thin titanium films, prepared under UHV conditions and deuterated in situ at room temperature, has been studied by means of thermal desorption mass spectrometry (TDMS) and a combination of scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The observed Ti film thickness dependent morphology was found to play a crucial role in the titanium deuteride (TiDy) film formation and its decomposition at elevated temperatures. TDMS heating induced decomposition of fine-grained thin Ti films, of 10-20 nm thickness, proceeds at low temperature (maximum peak temperature Tm about 500 K) and its kinetics is dominated by a low energy desorption (ED = 0.61 eV) of deuterium from surface and subsurface areas of the Ti film. The origin of this process is discussed as an intermediate decomposition state towards recombinative desorption of molecular deuterium. The TiDy bulk phase decomposition becomes dominant in the kinetics of deuterium evolution from thicker TiDy films. The dominant TDMS peak at approx. Tm = 670 K, attributed to this process, is characterized by ED = 1.49 eV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号