首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
叙述了多层衍射光学元件的设计原理.通过对多层衍射光学元件结构、位相延迟表达式、材料选择匹配的研究,使得优化最大光栅高度后的多层衍射光学元件能够实现大幅度提高宽光谱范围内衍射效率的作用.其衍射效率在从g谱线(435.8343nm)到C谱线(656.2725nm)的可见光范围内的任何波长上的理论衍射效率均在999/6以上,带宽积分平均衍射效率为99.7%,能够满足高质量成像光学系统应用的需要,并利用该元件设计了长焦距复消色差物镜.  相似文献   

2.
讨论了多层衍射光学元件的光学成像性质.给出了优化设计多层衍射光学元件最大光栅厚度的方法,分析了构成多层结构的每块单层衍射元件的衍射效率对整体衍射效率的贡献作用.在0.436~0.656 μm的可见光波段,多层衍射光学元件最低衍射效率可达到98%以上,克服了单层衍射元件偏离设计波长后衍射效率显著下降的缺点,改善了宽波段衍射效率.将多层衍射光学元件应用在折、衍射混合光学系统中能够明显提高系统的成像质量,同时使得光学系统体积减小,重量减轻,并且在某些系统中可以避免使用昂贵的特殊材料,从而可以降低光学系统的成本价格.  相似文献   

3.
讨论了多层衍射光学元件的光学成像性质.给出了优化设计多层衍射光学元件最大光栅厚度的方法,分析了构成多层结构的每块单层衍射元件的衍射效率对整体衍射效率的贡献作用.在0.436~0.656 μm的可见光波段,多层衍射光学元件最低衍射效率可达到98%以上,克服了单层衍射元件偏离设计波长后衍射效率显著下降的缺点,改善了宽波段衍射效率.将多层衍射光学元件应用在折、衍射混合光学系统中能够明显提高系统的成像质量,同时使得光学系统体积减小,重量减轻,并且在某些系统中可以避免使用昂贵的特殊材料,从而可以降低光学系统的成本价格.  相似文献   

4.
以衍射光学元件相位延迟表达式为理论基础,采用光学材料的折射率柯西色散近似公式,研究并得到了多层衍射光学元件的相位延迟与材料的关系,以及衍射效率与设计波长的关系.在400~700 nm可见光波段,以聚甲基丙烯酸酯和聚碳酸酯为基底材料,由柯西色散近似公式设计的多层衍射光学元件的最大带宽积分平均衍射效率为99.62%,相应的...  相似文献   

5.
衍射光学元件衍射效率的测量   总被引:2,自引:0,他引:2  
杨亮亮  崔庆丰  刘涛  薛常喜 《光学学报》2012,32(4):412007-156
根据衍射光学元件衍射效率的测量原理,建立衍射光学元件衍射效率测量的双光路装置,简要介绍了双光路测量的优点。针对衍射光学元件衍射效率的测量装置,讨论了影响衍射效率测量精度的因素,合理地选择测量装置中的针孔光阑,即可以让主衍射级次的光全部通过被探测器接收,又可以滤掉次级衍射光,保证测量结果的准确度。针对所设计研制的一个折衍射混合成像光学系统,测量了可见光波段3个激光波长的衍射效率,并对测量结果进行了模拟和分析。在473~632.8nm波段范围内任意一个波长处,衍射效率的测量结果同理论值的偏差均小于5.0%。实验证明,双光路测量装置可以用于测量衍射光学元件的衍射效率。  相似文献   

6.
入射角对双层衍射光学元件衍射效率的影响   总被引:1,自引:0,他引:1  
基于单层衍射二元光学元件的相位延迟表达式,将双层衍射光学元件的衍射面用二元光学元件的台阶表面近似模拟,推导出光束斜入射时双层衍射光学元件的衍射面产生的相位延迟,揭示出含有斜入射角度的双层衍射光学元件衍射效率表达式.实例分析结果表明,双层衍射光学元件衍射效率仅在一定角度范围内对入射角的变化不敏感,当入射角度持续增大时,衍射效率随入射角的增加快速下降.当入射角从0°增大到4.5°时,衍射效率几乎没有下降;当入射角从4.5°增大到6.7°时,衍射效率开始缓慢下降到95%;当入射角从6.7°增大到9.5°时,衍射效率明显下降到80%;当入射角从9.5°增大到18°时,衍射效率快速下降到0.  相似文献   

7.
毛珊  赵建林 《光学学报》2019,39(3):68-75
基于等效介质理论和多层衍射元件的本体相位延迟,考虑增透膜相位调制的影响,对多层衍射光学元件的表面微结构参数进行优化;采用优化设计方法分析应用于可见光波段镀有增透膜的多层衍射光学元件。结果表明:优化设计方法在保证增透膜物理作用的前提下,实现了在设计波长处的衍射效率为100%以及在宽波段内具有高多色光积分衍射效率;该方法弥补了传统多层衍射光学元件的设计缺陷,完善了多层衍射光学元件的设计理论,为混合成像系统的设计提供了参考。  相似文献   

8.
采用多层衍射元件是实现宽波段高衍射效率的有效方法,设计了一个含双层衍射元件-30℃~70℃消热差系统。通过合理选择衍射面的基底材料,优化衍射表面的浮雕深度,设计出红外宽波段高衍射效率的消热差光学系统。设计结果表明,在整个设计温度范围内,该光学系统成像质量良好,光学传递函数在16lp/mm时均在0.6以上。  相似文献   

9.
基于对多层衍射元件的衍射效率的理论分析,设计了用于头盔显示器的含有多层衍射元件的60视场折/衍射混合目镜系统。系统在设计波段和整个视场范围内衍射效率均在90 %以上,提高了光能利用率和像面对比度。目镜的出瞳距离为22 mm,出瞳直径为8 mm。调制传递函数(MTF)在25 lp/mm时全视场均在0.38以上,满足VGA分辨率要求。目镜中畸变为4.8%,垂轴色差最大为10 m。整个系统结构紧凑,镜头总长26.8 mm,最大直径16 mm,全系统质量仅8 g,实现了光学系统的轻小型化  相似文献   

10.
为消除单层衍射元件在可见光宽波段中低的衍射效率对成像质量的影响,根据探测器的量子效率,提出了设计波长的选择方法,构建了可见光宽波段折衍混合系统受衍射效率影响的点扩散函数(PSF)模型。使用构建的PSF模型进行图像复原,提高了折衍射混合系统的图像质量。为了验证所提方法的有效性,将单层衍射光学元件引入目前已有的专利物镜系统中进行优化设计,优化后的系统中不仅光学元件的数量得到了减少,还将波段范围从486.1~656.3 nm扩展至400.0~800.0 nm。利用所提方法对波段范围扩展后的低衍射效率图像进行复原,复原后的图像质量不论在主观上还是客观上都有明显提升,这说明所提方法可用于含单层衍射元件的可见光宽波段系统设计。  相似文献   

11.
An optimization for diffraction efficiency of the multi-layer diffractive optical elements (MLDOEs) is presented, then the construction process of optimization program is introduced in detail. A new optimization initial point is proposed, which contributes to analyze the relationship between the optimal relief heights and the base materials. Through the optimization examples, diffraction efficiency higher than 99.7% from F line (486.1327 nm) to C line (656.2725 nm) of visible waveband can be achieved, and the polychromatic integral diffraction efficiency (PIDE) over the entire waveband is 99.94%. Moreover, this paper compares and analyzes optimization results of different glass pairs, and the relationship between the optimal relief heights pairs and base materials pairs is obtained.  相似文献   

12.
宽光谱高衍射效率脉宽压缩光栅设计和性能分析   总被引:2,自引:0,他引:2  
基于飞秒激光对脉宽压缩光栅宽光谱和高衍射效率的要求,提出了一种金属介质膜结构的宽光谱高衍射效率脉宽压缩光栅,该光栅由基底、金属介质膜和表面浮雕结构组成.为获得宽光谱高衍射效率的脉宽压缩光栅,采用严格耦合波理论对金属介质膜光栅的结构参数进行优化设计.数值分析表明当金属介质光栅的槽深、剩余厚度、占空比和入射角分别为272 ...  相似文献   

13.
A data projector using three liquid crystal display panels has a complex optical system. The illuminating optics separate the beam from a light source into three primary colors and separate those into opposite polarizations using multi-layer films and prisms. A reflection grating with the period of subwavelength has high diffraction efficiency for p polarized light and high regularly reflectance for s polarized light. The diffraction angle of a grating largely depends on the wavelength, because a diffractive optical element (DOE) has large chromatic dispersion. The grating with the period of subwavelength can separate the unpolarized light into polarization components effectively using its polarization dependency and can separate white light into color components using its chromatic dispersion simultaneously. The grating makes the optical system simpler and smaller than those with conventional devices. In this paper the efficiency of polarization separation for the grating is calculated by a rigorous analytical method. Next, the condition for color separation is calculated by Snell#x0027;s law, and an optical system using a grating that performs polarization and color separation is proposed. Experimental results of the DOE fabricated are well matched with those of this simulation.  相似文献   

14.
Xue C  Cui Q  Liu T  Yang L  Fei B 《Optics letters》2010,35(24):4157-4159
A method for optimal design of a multilayer diffractive optical element (MLDOE) for dual-wide-waveband optical systems is presented with consideration of polychromatic integral diffraction efficiency (PIDE) and the weight factors of PIDE for each waveband. The design process and simulation of a MLDOE in mid-wave and long-wave IR are described, and the comparison of diffraction efficiency of the MLDOEs for different design wavelength pairs determined by different methods is given. This method can make the design process more rational and more reasonable and can give a better design result than that with the conventional design method.  相似文献   

15.
Diffractive optics is an important technique for beam shaping with high light efficiency and strong diffraction pattern flexibility. Since the diffraction angle is limited by the unit size of the diffractive optical element(DOE),the size of the required diffraction pattern is always rather small. In this Letter, refractive/diffractive hybrid optical elements(RDHOEs) consisting of a DOE and a lens are used to realize beam shaping for a large diffraction pattern. The lens, as the component of the RDHOEs, can not only be concave but also convex,and the double sampling Fresnel diffraction algorithm is developed for the design of these two types of RDHOEs.The simulation and experimental results provide solid evidence to demonstrate the proposed method with the pure phase spatial light modulator.  相似文献   

16.
The diffractive optical element (DOE) is widely used to generate various illumination modes in the projection lithography system. The working principle and design methods of the DOE are discussed in detail in this paper. A mixed multi-region design method is proposed to calculate the phase of DOE based on the poor spatial coherence of excimer laser, using the Gerchberg–Saxton (GS) algorithm. The DOEs generating circular, dipole and quadrupole illumination modes are designed and simulated by three different methods: single region design, repeated multi-region design and mixed multi-region design. The performance of these DOEs are compared and analyzed with these three design methods. The mixed multi-region design method is used to design the DOEs generating three illumination modes, the diffraction efficiencies are greater than 85%, and the non-uniformities of illumination are less than 3%. The analysis results indicate that the DOE designed by the mixed multi-region design can achieve higher diffraction efficiency and illumination uniformity of the far-field intensity distribution without modifying the GS algorithm.  相似文献   

17.
折衍射混合复消色差望远物镜中的色球差   总被引:2,自引:1,他引:1  
一个正透镜、一个负透镜及一个衍射光学元件以不同的组合可以构成两种折衍射混合光学系统.当这两种系统消球差、彗差及复消色差后会产生不同的色球差.通过赛德尔像差理论,分析了这两种结构产生不同色球差的原因.计算表明当衍射光学元件以负透镜的平面为基底时产生的色球差为以正透镜的平面为基底时产生的色球差的7倍.对衍射光学元件以负透镜的平面为基底的情形,提出了减小系统色球差的解决办法,使系统色球差减小到0.307 mm.另外设计了一个传统复消色差光学系统,并和折衍射混合光学系统进行了比较,分析表明,衍射光学元件可代替传统光学系统中的特殊光学材料并使系统达到相同的成像质量.最后讨论了衍射光学元件的衍射效率对系统成像质量的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号