首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We describe the application of low energy time-of-flight coincidence (e,2e) spectroscopy for measurements of the energy band parameters of a dielectric. The (e,2e) spectrometer can operate also in a single-electron mode by switching off coincidence conditions, and can be used for recording electron energy loss spectra (EELS). Thus, the combination of (e,2e) and EELS allows the measurement of energy gap Eg, valence bandwidth ΔEval, electron affinity χ and excitonic levels position Eex of a dielectric. The energy band parameters of LiF film deposited on Si(001) surface are measured: ΔEval=   相似文献   

3.
The effect of varying effective index and random deviations of domain boundary on sum frequency generation (SFG) in quasi-phase-matching waveguides are analyzed and analytical expressions of the conversion efficiency are provided for the first time to our knowledge. By simplifying the coupled equations of SFG in waveguide, we provide analytical expressions of the conversion efficiency for the first time. Four models for variations of effective index and random errors of domains are investigated. The results demonstrate that, when effective index varying regularly along the waveguide, the normalized conversion efficiency of SFG is reduced and the curves of are no longer sinc2 function but ripple profiles, which is different from the situation in bulk crystals; with the same magnitude, random period error is of much more significance than random duty cycle error, which is similar with the case in bulk crystals.  相似文献   

4.
We present measurements of the linear Stark effect on the 4I15/2 → 4I13/2 transition in an Er3+-doped proton-exchanged LiNbO3 crystalline waveguide and an Er3+-doped silicate fiber. The measurements were made using spectral hole burning techniques at temperatures below 4 K. We measured an effective Stark coefficient (Δμeχ)/(h) = 25 ± 1 kHz/V cm−1 in the crystalline waveguide and  kHz/V cm−1 in the silicate fiber. These results confirm the potential of erbium-doped waveguides for quantum state storage based on controlled reversible inhomogeneous broadening.  相似文献   

5.
Multi-mode rate equations have been developed to investigate mode competition in high-power acousto-optically Q-switched planar waveguide lasers. The mode competition arises from coupling effects and temporal losses in the transform between guided modes and free-space propagation. Pulse-to-pulse instability and temporal beam distortions are enlarged by mode competition when the laser works in the multi-mode regime. The influence of parasitic oscillation is also discussed. A Nd:YAG planar waveguide laser has been established with a folded hybrid/unstable resonator. A maximum average power of 83 W with a beam propagation factor is obtained. The theoretical simulation agrees well with the experimental observation.  相似文献   

6.
A theoretical method for investigating the inter-relation between the molecular structure and electronic structure has been established on the basis of the 252×252 complete energy matrices for a 3d5 configuration ion in a tetragonal ligand field. By means of this method, which is independent of the X-ray diffraction, the local structure of the paramagnetic Mn2+ ion in perovskite fluorides A2MF4 (A=K, Rb; M=Zn, Mg, Cd) are determined directly by analyzing the EPR spectrum of octahedral Mn2+ center in A2MF4 crystals and the optical absorption spectrum of the (MnF6)4− cluster. It is shown that, comparing with the octahedral cubic structure, the local micro-structure in the vicinity of Mn2+ displays an elongated distortion when and a compressed distortion when , and ΔR vs. as well as ΔR vs. in the distortion region is, respectively, approximately linear. Simultaneously, the theoretical zero-field-splitting parameters , and are in good agreement with the experimental values.  相似文献   

7.
Magnetic susceptibility obtained from magnetization measurement (for fields H=0.1 and 1.0 T) of polycrystalline Eu2Ti2O7 shows two distinct features. Firstly, increases on cooling below 300 K and attains a temperature-independent constant value at 68 K (Tmax). Secondly, shows an antiferromagnetic increase below 4.9±0.1 K. The former behavior is explained by crystal field (CF) theory. CF levels and wave functions of ground and excited states are determined accurately from analyses of and earlier reported Mössbauer and optical spectra. Analysis of vs. 1/T curve at low temperatures gives the classical nearest-neighbor exchange interaction Jcl=−0.76 K and a weak dipolar interaction Dnn=0.0056 K. CP of polycrystalline sample of Eu2Ti2O7 and Y2Ti2O7 are measured between 1.8-35 and 1.8-120 K respectively and θD vs. T (K) curves are calculated. At 4 K, θD of Eu2Ti2O7 shows a kink and dCP/dT curve show a maximum. Optical results show energy exchange between Eu3+ ions at intrinsic and extrinsic (defect) sites via super-exchange interaction at low temperature which may account for the observed anomalous behavior of and CP.  相似文献   

8.
9.
10.
11.
The electronic density of states (DOS) and magnetic moments of rare-earth antimonides (RCrSb3) have been studied by the first principles full-potential linearized augmented plane wave (FP-LAPW) method based on density functional theory (DFT). For the exchange-correlation potential, the LSDA+U method is used. The effective moments of LaCrSb3, CeCrSb3, NdCrSb3, GdCrSb3, and DyCrSb3 were found to be , , , and respectively. The exchange-splittings of Cr-3d state electrons and 4f-states of rare earth elements were analyzed to explain the magnetic nature of these systems. The Cr atom plays a significant role on the magnetic properties due to the hybridization between Cr-3d and Sb-5p state orbitals. The results obtained are compared and found to be in close agreement with the available data.  相似文献   

12.
The optical response of the intersubband excitation of multiple InAs/AlSb quantum wells embedded in a planar semiconductor microcavity has been studied through angle-dependent reflectance measurements. Using a resonator based on total internal reflection, a strong coupling is demonstrated between the intersubband optical transition and the cavity photon, with the attendant formation of intersubband polaritons. A giant vacuum-Rabi splitting 2ΩR was observed both at liquid helium temperatures () as well as at 300 K (), for a transition energy . The observed ratio is a record high value (14%) for any strongly-coupled systems, and demonstrates the huge potential of this material for the achievement of the ultra-strong coupling regime predicted theoretically.  相似文献   

13.
R. Villagomez  R. Lopez  R. Cortes  V. Coello 《Optik》2007,118(3):110-114
This work describes the performance of a compact “in-house built” radio–frequency (RF)-excited CO2 slab waveguide laser which has the innovation of having a plugged-in RF generator–amplifier module directly connected into the positive electrode of the laser head. The design circuit parameters include a matching circuit and a feed-through element as a whole. The overall laser performance takes into account the waveguide dimension (y-axis) as approximately one-tenth of the free space transverse dimension (x-axis). The optical resonator is calculated to be in the regime of the negative branch for unstable confocal resonators, having focal lengths of and with geometrical amplification of 1.108. Optical output coupling mirror was set to 9.7%. The calculated waveguide length is 37.73 cm whilst the total resonator length was adjusted to 42 cm to allow coupling losses less than 1%. The laser operational efficiency was about 12% and the output beam quality of 1.13 which is close to the ideal Gaussian beam. The optical output power was accomplished by playing with different gas compositions to have a final optimized gas proportion of 1:1:2.7:0.3 correspondingly to CO2, N2, He and Xe as admixture.  相似文献   

14.
Since the energy of a reactor neutrino is a few MeV, all , and oscillations are accessible by reactor neutrino experiments. KamLAND observed the oscillation and currently Double Chooz, RENO and Dayabay experiments are under construction aiming to detect oscillation. There are still good prospects for future reactor neutrino experiments after them. For example, there is room to further improve sin22θ13 accuracy at a baseline of ∼1.5 km, a very precise sin22θ12 measurement and the determination of mass hierarchy may be possible at a baseline ∼50 km, and if KamLAND is enlarged to the SuperKamiokande size, better measurement of and sin22θ12 will be anticipated. It is important to take into account such possibilities when planning future neutrino program after θ13 is measured by current experiments.  相似文献   

15.
Pressure dependence of the specific volume, V(P), of the recently discovered high-pressure compound Hf3N4 having cubic Th3P4-type structure (c- Hf3N4) has been measured at room temperature up to 43.9 GPa in a diamond anvil cell using energy-dispersive X-ray powder diffraction combined with synchrotron radiation. A least-square fit of the Birch-Murnaghan equation of state to the experimental V(P)-data yielded for c- Hf3N4 the bulk modulus of and its first pressure derivative of . For fixed at 4 the bulk modulus of c- Hf3N4 was determined to be . The obtained B0-value is only insignificantly below that estimated in preliminary measurements. Existing theoretical predictions for B0 scatter around the present experimental data. The observation of a high bulk modulus of c- Hf3N4 supports the suggestion that this compound could have high hardness.  相似文献   

16.
Magnetic susceptibility of powder Er2Ti2O7 (ErT) is measured between 300 K and 80 K. shows a Curie-Weiss (CW) type behaviour with   ErTiO3.5 and . A crystal field (CF) analysis of our experimental data, g-values (g=0.27 and g=7.8) and the positions of two CF levels (reported earlier from an inelastic neutron scattering study) provide CF parameters and CF levels of the ground 4I15/2 and excited multiplets of ErT. The theoretical follows a CW-type behaviour, with . Single-ion magnetic anisotropy (χχ) is 9500×10−6 emu/mol ErTiO3.5 at 300 K, which increases by ∼54 times at 10 K and ErT resembles an XY planar system. It can be inferred from CF analysis that the earlier observed change of from −13 K to −22 K below 50 K is not due to the CF effect. Nuclear hyperfine (HF) levels of 167ErT and 166ErT are calculated and the theoretical curve of vs. T (K) for T<TN matches the observed results. Mössbauer lines expected for 166ErT are also predicted.  相似文献   

17.
We have investigated the hyperfine interaction in Co2SiO4 by inelastic neutron scattering with a high resolution back-scattering neutron spectrometer. The energy spectrum measured from a Co2SiO4 powder sample revealed inelastic peaks at at T=3.5 K on both energy gain and energy loss sides. The inelastic peaks move gradually towards lower energy with increasing temperature and finally merge with the elastic peak at the electronic magnetic ordering temperature . The inelastic peaks have been interpreted to be due to the transition between hyperfine-split nuclear level of the 59Co isotopes with spin . The temperature dependence of the energy of the inelastic peak in Co2SiO4 showed that this energy can be considered to be the order parameter of the antiferromagnetic phase transition. The determined hyperfine splitting in Co2SiO4 deviates from the linear relationship between the ordered electronic magnetic moment and the hyperfine splitting in Co, Co-P amorphous alloys and CoO presumably due to the presence of unquenched orbital moment. These results are very similar to those of CoF2 recently reported by Chatterji and Schneider [7].  相似文献   

18.
19.
Planar optical waveguides consisting of thin dielectric films and buffer layers with metal cladding have been investigated theoretically. A computer program was written to calculate the exact zeroes of complex eigenvalue equation for TE and TM modes in multilayer metal clad waveguide polarizer. Numerical results and illustrations are given for Polycarbonate waveguide with other polymers as buffer and Al, Ag and Au as cladding metals at . It is also shown that, using thin (finite) films of metal produce more efficient polarizers as compared to semi-infinite metal films. Effect of low index buffer layer on attenuation of TM/TE modes is also investigated.  相似文献   

20.
We present the infrared and Raman study of the optical phonon modes of the defective compounds ZnGa2Se4 and ZnGa2S4. Most of the compounds have been found to crystallize in the thiogallate structure (defect chalcopyrite) with space group where all cations and vacancies are ordered. For some Zinc compounds a partially disordered cationic sublattice with various degrees of cation and vacancy statistical distribution, which lead to the higher symmetry (defect stannite), has been reported. For ZnGa2Se4 we have found three modes of A symmetry, showing Raman activity only. In addition, we have observed each five modes of B and E symmetry, showing infrared as well as Raman activity. The number of modes and their symmetry assignment, based on polarized measurements, clearly indicate space group for the investigated crystals of ZnGa2Se4.Regarding ZnGa2S4 we have found three modes exclusively showing Raman activity (2A⊕1B1), and only eight modes showing infrared as well as Raman activity (3B2⊕5E). The assignment of the modes has been derived by analyzing the spectral positions of the vibrational modes in comparison to a number of compounds. From the number and symmetry assignment of the optical phonon modes we confirm that ZnGa2S4 most likely crystallizes in space group .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号