首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 397 毫秒
1.

We present an equation of state for a cubic non-linear elastic material in a general state of finite strain. For hydrostatic pressure, the predictions closely follow Murnaghan's well-known equation of state. At 170 kbar, our model differs from Murnaghan's equation by only 1.3%, which contrasts with the currently accepted non-linear elasticity theory that differs by 10% at this pressure. The theory is based on expressing the variation of the elastic constants as a linear function of stress rather than strain. We define a different set of third-order elastic constants, which involve a derivative with respect to stress, and relate these to the conventional third-order elastic constants. We apply the model to GaAs under hydrostatic pressure and we compare the predictions of the conventional non-linear theory with those of the model we present.  相似文献   

2.
We show that quaternion quantum mechanics has well-founded mathematical roots and can be derived from the model of the elastic continuum by French mathematician Augustin Cauchy, i.e., it can be regarded as representing the physical reality of elastic continuum. Starting from the Cauchy theory (classical balance equations for isotropic Cauchy-elastic material) and using the Hamilton quaternion algebra, we present a rigorous derivation of the quaternion form of the non- and relativistic wave equations. The family of the wave equations and the Poisson equation are a straightforward consequence of the quaternion representation of the Cauchy model of the elastic continuum. This is the most general kind of quantum mechanics possessing the same kind of calculus of assertions as conventional quantum mechanics. The problem of the Schrödinger equation, where imaginary ‘i’ should emerge, is solved. This interpretation is a serious attempt to describe the ontology of quantum mechanics, and demonstrates that, besides Bohmian mechanics, the complete ontological interpretations of quantum theory exists. The model can be generalized and falsified. To ensure this theory to be true, we specified problems, allowing exposing its falsity.  相似文献   

3.
We investigate the mechanics ofa new double chain-model of DNA. The model consists of two long elastic homogeneous strands (or rods), which represent two polynucleotide chains of the DNA molecule, connected with each other by an elastic membrane (or some linear springs) representing the hydrogen bonds between the base pairs of the two chains. The nonlinear dynamical equations are derived and some solitary wave solutions are discussed. By the way,our model can be regarded as the mechanical model of cubic nonlinear Klein-Gordon equation and 4-field equation.  相似文献   

4.
A considered application of carbon nanotubes is nanopiping in nanofluidic devices. The use of nanotubes for fluid transport requires large-diameter tubes that can sustain prescribed loading without failure. Two models of the stress–strain state of long multiwall carbon nanotubes, subjected to internal pressure, are described. Cylindrical nanotubes having a Russian doll structure have been considered. It is assumed that the deformations are linear elastic and negligible along the tube axis (in comparison with the radial deformations). This assumption is not restrictive for potential applications of nanotubes, where their deformations must be small and reversible. The distance between the layers is small in comparison to the radii of curvature of graphite layers. In the case of several carbon layers, a discrete model (DM) is proposed. The solutions of DM equations, with corresponding boundary conditions, determine the stresses between the layers, the forces in the layers, and the deformation of the layers. For the case of thick walls built of numerous carbon layers, a continuous model (CM) is proposed. The main CM equation is the Euler's differential equation with corresponding boundary conditions. Its solution defines the continuous distribution of the stresses and strains across the wall thickness of the tube.  相似文献   

5.
We employ the spin-polarized generalized gradient approximation within the density functional theory to investigate the equation of state, magnetism and elastic constant of cubic ACrO3 (A=Pb, Ca, Sr, and Ba) perovskite. The antiferromagnetic phase is the most stable state at zero pressure. Under pressure, the ferromagnetic state will transform to the non-magnetic state. Considering the effect of magnetism, the equilibrium lattice constant, the bulk modulus and the high pressure equations of state agree well with the available experiments. By using the energy-strain method, the predicted elastic properties are satisfactory.  相似文献   

6.
Exact solution of Einstein's field equations is obtained for massivestring cosmological model of Bianchi III space-time using the technique given by Letelier (1983) in presence of perfect fluid and electromagnetic field. To get the deterministic solution of the field equations the expansion θ in the model is considered as proportional to the eigen value σ22 of the sheartensor σji and also the fluid obeys the barotropic equation of state. It is observed that in early stage of the evolution of the universe string dominates over the particle whereas the universe is dominated by massive string at the late time. It is also observed that the string phase of the universe disappears in our model because particle density becomes negative. Some physicaland geometric properties of the model are also discussed.  相似文献   

7.
We investigate the mechanics ofa new double chain-model of DNA. The model consists of two long elastic homogeneous strands (or rods), which represent two polynucleotide chains of the DNA molecule, connected with each other by an elastic membrane (or some linear springs) representing the hydrogen bonds between the base pairs of the two chains. The nonlinear dynamical equations are derived and some solitary wave solutions are discussed. By the way,our model can be regarded as the mechanical model of cubic nonlinear Klein-Gordon equation and φ4-field equation.  相似文献   

8.
This paper develops a three-dimensional analytical model of a cylinder that contains a longitudinal stiffener. The model begins with the equations of motion for a fully elastic solid that produces displacement fields with unknown wave propagation coefficients. These are inserted into stress and displacement equations at the cylinder boundaries and at the location of the stiffener. Orthogonalization of these equations produces an infinite number of indexed algebraic equations that can be truncated and incorporated into a global matrix equation. Solving this equation yields the solution to the wave propagation coefficients and allows the system's displacements and stresses to be calculated. The model is verified by comparison of the results of a plane strain analysis example to a solution generated using finite element theory. A three-dimensional example problem is formulated and the displacement results are illustrated. The inclusion of multiple stiffeners is discussed.  相似文献   

9.
Having analyzed the pressure dependence of volume V(σ), we demonstrate that the mechanism of the phase transition in HfO2 corresponds to the Fermi model. This indicates that at σ = 10 GPa, the ground state of Hf ions changes. Within the Fermi model, the stiffness moduli in the phases stable at σ < 10 GPa and σ > 10 GPa are calculated. It is shown that the results obtained are in better agreement with the well-known experiment than the results obtained in the framework of the quantum chemistry model (ab initio calculations) and the Birch-Murnaghan equation of state.  相似文献   

10.
An Eulerian conservative hyperbolic model of isotropic elastic materials subjected to finite deformation is addressed. It was developed by Godunov [S.K. Godunov, Elements of continuum mechanics, Nauka, Moscow, 1978 (in Russian) and G.H. Miller, P. Colella, A high-order Eulerian Godunov method for elastic–plastic flow in solids, J. Comput. Phys. 167 (2001) 131–176]. Some modifications are made concerning a more suitable form of governing equations. They form a set of evolution equations for a local cobasis which is naturally related to the Almansi deformation tensor. Another novelty is that the equation of state is given in terms of invariants of the Almansi tensor in a form which separates hydrodynamic and shear effects. This model is compared with another hyperbolic non-conservative model which is widely used in engineering sciences. For this model we develop a Riemann solver and determine some reference solutions which are compared with the conservative model. The numerical results for different tests show good agreement of both models for waves of very small and very large amplitude. However, for waves of intermediate amplitude important discrepancies between results are clearly visible.  相似文献   

11.
In the relativistic σ-ω model, including the vacuum fluctuation of nucleons and σ mesons, the effect of the temperature to the composition and equation of state of protoneutron star matter, nucleon effective mass and chemical potential of neutrons and electrons are studied. We find that the influence of the temperature on the equation of state of protoneutron star matter is indeed small, however, its influence on the composition of protoneutron star, which will contribute to the evolution of protoneutron star, cannot be neglected in low density region. The chemical potentials of neutrons and electrons also depend on the temperature in almost the same density region.  相似文献   

12.
A mixed problem for the compact U(m) vector nonlinear Schrödinger model with an arbitrary sign of coupling constant is exactly solved. It is shown that a new class of solutions—composite U(σ+μ) vector solitons with inelastic interaction (changing shape without energy loss) at σ>1 and strictly elastic interaction at σ=1— exists for m≥3. These solitons are color structures consisting of σ bright and μ dark solitons (σ+μ=m) and capable of existing in both self-focusing and defocusing media. The N-soliton formula universal for attraction and repulsion is derived by the Hirota method.  相似文献   

13.
In this paper, we establish a hydrodynamic system to study vesicle deformations under external flow fields. The system is in the Eulerian formulation, involving the coupling of the incompressible flow system and a phase field equation. The phase field mixing energy can be viewed as a physical approximation/regularization of the Helfrich energy for an elastic membrane. We derive a self-consistent system of equations describing the dynamic evolution of vesicles immersed in an incompressible, Newtonian fluid, using an energetic variational approach. Numerical simulations of the membrane deformations in flow fields can be conducted based on the developed model.  相似文献   

14.
The finite dynamic deformations of a composite hollow sphere made of an arbitrary number of layers is treated. The layers are assumed to be made of a non-linearly elastic incompressible material. The cavity wall is subjected to a spatially uniform radial pressure and the spherically symmetric motions of the layered hollow sphere are considered. A nonlinear ordinary differential equation governing the motion of the cavity wall is obtained and solved by a numerical method.  相似文献   

15.
The paper is focused on calculating the finite temperature and quark/baryon chemical potential dependencies of the quark condensate and the π-and σ-meson masses in the subcritical region in the instanton model of the QCD vacuum. The impact of phononlike excitation of instanton liquid on the characteristics of the σ meson in such an environment is also examined.  相似文献   

16.
In the present work a study is given for the evolution of a flat, isotropic and homogeneous Universe, which is filled with a causal bulk viscous cosmological fluid. We describe the viscous properties by an ultra‐relativistic equation of state, and bulk viscosity coefficient obtained from recent lattice QCD calculations. The basic equation for the Hubble parameter is derived by using the energy equation obtained from the assumption of the covariant conservation of the energy‐momentum tensor of the matter in the Universe. By assuming a power law dependence of the bulk viscosity coefficient, temperature and relaxation time on the energy density, we derive the evolution equation for the Hubble function. By using the equations of state from recent lattice QCD simulations and heavy‐ion collisions we obtain an approximate solution of the field equations. In this treatment for the viscous cosmology, no evidence for singularity is observed. For example, both the Hubble parameter and the scale factor are finite at t = 0, where t is the comoving time. Furthermore, their time evolution essentially differs from the one associated with non‐viscous and ideal gas. Also it is noticed that the thermodynamic quantities, like temperature, energy density and bulk pressure remain finite. Particular solutions are also considered in order to prove that the free parameter in this model does qualitatively influence the final results.  相似文献   

17.
Motivated by recent experiments of a novel 5d Mott insulator in Sr2IrO4, we have studied the two-dimensional three-orbital Hubbard model with a spin-orbit coupling λ. The variational Monte Carlo method is used to obtain the ground state phase diagram with varying an on-site Coulomb interaction U as well as λ. It is found that the transition from a paramagnetic metal to an antiferromagnetic insulator occurs at a finite U=U(MI), which is greatly reduced by a large λ, characteristic of 5d electrons, and leads to the "spin-orbit-induced" Mott insulator. It is also found that the Hund's coupling induces the anisotropic spin exchange and stabilizes the in-plane antiferromagnetic order. We have further studied the one-particle excitations by using the variational cluster approximation and revealed the internal electronic structure of this novel Mott insulator. These findings are in agreement with experimental observations on Sr2IrO4.  相似文献   

18.
In the relativistic σ-ωmodel, the influence of the parameters in self-interaction of a meson to the equation of state of normal nuclear matter, especially, to incompressibility, effective mass, and coupling constants, is studied in detail. We find that these parameters have an intense relationship to the property of nuclear matter. At the same time , we study the relation between the binding energy and pressure of relativestic △-resonance nuclear matter and temperature using using above results in the relativistic σ-ω-π model,and it is interesting to compare it to our prior work. In all these studies, the vacuum fluctuation on nucleon, △-isobar, and σmeson is considered.  相似文献   

19.
Photoionization of H2(1Σg+) in a vibrational υ″ and rotational N″ state into H2+(2Σg+) in a vibrational υ′ and rotational N′ state is studied theoretically. The differential cross section, after summing over the final states, is expressed in the well-known simple form of (σT)[1 + βP2(cos θ)]. Parallel expressions are obtained for H2+ in a specific υ′ state (in terms of σ(υ′) and β(υ′)) and for H2+ in a rotational fine level υ′N′ (in terms of σ(υ′N′) and β(υ′N′)). Asymmetry parameters β, β(υ′) and β υ′N′), which are expressed in terms of Racah and Clebsch-Gordan coefficients and electronic transition moments, can be reduced approximately to 2 lineary polarized light and to -1 for unpolarized light. Using single-center electronic wave functions and including partial eaves l = 1, 3, and 5, σ(υ′) and β(υ′) are computed as a function of υ′ at 584 Å. The computed σ(υ′) divided by the Frank-Condon overlap, in agreement with experimental results, increases monotonically with υ′; σT and β are computed in the incident photon energy range of 600–4000 Å and the results compare favorably with previous calculations.  相似文献   

20.
方刚  张斌 《物理学报》2013,62(15):154502-154502
本文将地球介质看作是弹性介质, 从弹性体的Navier方程出发, 建立均匀弹性介质和非均匀弹性介质的分析动力学方程——Lagrange方程, 利用弹性介质的Lagrange方程导出匀弹性介质和非均匀弹性介质的地震波方程, 为用Lagrange分析动力学研究地球介质中地震波传播规律和解决地震勘探中的有关问题提供基础. 关键词: 地震勘探 弹性介质 Lagrange 方程 地震波方程  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号