首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Constant temperature and pressure molecular dynamics (MD) simulations are performed to investigate the thermal expansivity of MgO at high pressure, by using effective pair-wise potentials which consist of Coulomb, dispersion, and repulsion interactions that include polarization effects through the shell model (SM). In order to take into account non-central forces in crystals, the breathing shell model (BSM) is also introduced into the MD simulation. We present a comparison between the volume thermal expansion coefficient α dependences of pressure P at 300 and 2000~K that are obtained from the SM and BSM potentials and those derived from other experimental and theoretical methods in the case of MgO. Compared with the results obtained by using the SM potentials, the MD results obtained by using BSM potentials are more compressible. In an extended pressure and temperature range, the α value is also predicted. The properties of MgO in a pressure range of 0--200~GPa at temperatures up to 3500~K are summarized.  相似文献   

2.
利用分子动力学方法,模拟研究了高压下MgO的熔化特性.通过晶体的现代熔化理论,对MgO的分子动力学模拟熔化温度进行了修正,得到了高温高压下MgO的熔化温度.计算得到的MgO熔化曲线和已有的实验及其它理论结果在0-135 GPa进行了比较,发现修正得到的MgO熔化温度和由Lindemann熔化方程及两相方法得到的结果在压力低于15 GPa时符合很好.同时,MgO熔化模拟有效解释了一阶相变分子动力学过程中出现的过热熔化现象.  相似文献   

3.
利用壳层分子动力学方法结合有效的对势,研究了高压条件下CaO的熔化曲线。研究表明,分子动力学模拟结果精确地再现了广泛压强范围内CaO的状态方程。研究中考虑了分子动力学模拟熔化存在的过热现象,通过晶体的现代熔化理论,对CaO的分子动力学模拟熔化温度进行了修正,获得了高温高压下CaO正确的熔化温度。因此,常压下引入壳层模型的分子动力学为研究物质熔化提供了一个很好的方法,这种方法可进一步推广到其它物质的高压熔化研究中。  相似文献   

4.
Shell-model molecular dynamics (MD) simulation has been performed to investigate the melting of the major Earth-forming mineral: periclase (MgO), at elevated temperatures and high pressures, based on the thermal instability analysis. The interatomic potential is taken to be the sum of pair-wise additive Coulomb, van der Waals attraction, and repulsive interactions. The MD simulation with selected Lewis–Catlow (LC) potential parameters is found to be very successful in describing the melting behavior for MgO, by taking account of the overheating of a crystalline solid at ambient pressure. The thermodynamic melting curve is estimated on the basis of the thermal instability MD simulations and compared with the available experimental data and other theoretical results in the pressure ranges 0–150 GPa. Our simulated melting curve of MgO is consistent with results obtained from Lindemann melting equation and two-phase simulated data at constant pressure by Belonoshko and Dubrovinsky, in the pressure below 20 GPa. The extrapolated melting temperatures in the lower mantle are in good agreement with the results obtained from Wang's empirical model up to 100 GPa. Compared with experimental measurements, our results are substantially higher than that determined by Zerr and Boehler, and the discrepancy between DAC and MD melting temperatures may be well explained with different melting mechanisms. Meanwhile, the radial distribution functions (RDFs) of Mg–Mg, O–Mg, and O–O ion pairs near the melting temperature have been investigated.  相似文献   

5.
高压下钙钛矿结构MgSiO3的分子动力学研究   总被引:1,自引:0,他引:1  
利用分子动力学方法,研究了高温高压下钙钛矿结构MgSiO3的状态方程.研究表明,分子动力学模拟结果很好地再现了广泛温度和压强范围内钙钛矿结构MgSiO3的摩尔体积.温度300 K压强上升到120 GPa模拟的钙钛矿结构MgSiO3状态方程和有效的实验结果基本一致.在更高温度和更高压强下模拟的钙钛矿结构MgSiO3状态方程和他人的计算值吻合的很好.另外,还分别计算了温度300 K,900 K,1500 K和2500 K压强上升到120 GPa时MgSiO3的体积压缩率.  相似文献   

6.
利用分子动力学方法,研究了高温高压下钙钛矿结构MgSiO_3的状态方程。研究表明,分子动力学模拟结果精确地再现了广泛温度和压强范围内MgSiO_3的摩尔体积。在300 K压强上升到140 GPa模拟的MgSiO_3状态方程和有效的实验值、他人的拟合值以及基于局域密度近似的第一原理计算结果基本一致。并且更高温度和更高压强下模拟的MgSiO_3状态方程和他人的计算值吻合的很好。另外,还分别计算了300、900、2000和3000 K压强上升到120 GPa时MgSiO_3的体积压缩率。  相似文献   

7.
利用壳层模型分子动力学方法,研究了高温高压条件下CaF2的熔化温度,同时计算了温度为300K、压强上升到100GPa时CaF2 的状态方程.研究中考虑了分子动力学模拟的过热熔化,通过晶体的现代熔化理论,对CaF2 的分子动力学模拟熔化温度进行了修正, 获得了高温高压下CaF2的熔化温度.因此,常压下壳层模型分子动力学方法为研究物质熔化提供了一个很好的方法.  相似文献   

8.
岩盐结构氧化锌物态方程的分子动力学模拟   总被引:1,自引:0,他引:1  
利用分子动力学方法和有效经验对势模型对ZnO岩盐结构高温高压下的物态方程进行了研究, 发现分子动力学方法得到的ZnO岩盐结构的摩尔体积(300?1273 K,3.2?10.4 GPa)和实验结果吻合;另外,基于经验势模型的可靠性预测了1373?2273 K和0? 50 GPa的ZnO岩盐结构的P-V -T关系,并利用相应的热力学公式拟合得到了ZnO岩盐结构常态下的线性热膨胀系数、等温体模量及其对压力的一阶导数等重要的热力学参量.  相似文献   

9.
Shell-model molecular dynamics method is used to study the melting temperatures of MgO at elevated temperatures and high pressures using interaction potentials. Equations of state for MgO simulated by molecular dynamics are in good agreement with available experimental data. The pressure dependence of the melting curve of MgO has been calculated. The surface melting and superheating are considered in the correction of experimental data and the calculated values, respectively. The results of corrections are compared with those of previous work. The corrected melting temperature of MgO is consistent with corrected experimental measurements. The melting temperature of MgO up to 140GPa is calculated.  相似文献   

10.
Abstract

A synchrotron X-ray diffraction study on MgO has been done at simultaneous high pressure and temperature. The lattice parameter of MgO has been measured up to a static pressure of 6 GPa and a temperature of 1273 K, using a large volume pressure cell and energy-dispersive synchrotron X-ray powder diffraction. The compression was made following six high-temperature isotherms. A Vinet equation of state was used to fit the experimental P-V-T data. The Vinet's model compares very well with the experimental data above the Debye temperature (760 K) and allows the use of MgO as an alternative internal pressure calibrant for experiments at high temperature.  相似文献   

11.
The pressure-volume-temperature (P-V-T) equation of state (EOS), isothermal bulk modulus, and thermal expansivity of CaF2 with cubic fluorite-type structure are investigated using the constant temperature and pressure shell model molecular dynamics (MD) method with effective pair potentials which consist of the Coulomb, dispersion, and repulsion interaction. It was shown that MD simulation is very successful in accurately reproducing the measured volumes of the CaF2 over a wide range of pressures. The simulated P-V data matched X-ray diffraction experimental results up to 9.5 GPa at 300 K. In addition, volume thermal-expansion coefficient and isothermal bulk modulus were also calculated and compared with available experimental data and the latest theoretical results at ambient condition. At extended temperature and pressure ranges, The P-V EOS under different isotherms at selected temperatures, T-V EOS under different isobars at selected pressures, thermal expansivity, and isothermal bulk modulus were predicted up to 1500 K and 10 GPa. The detailed knowledge of thermodynamic behavior and EOS at extreme conditions are of fundamental importance to the understanding of the physical properties of CaF2.  相似文献   

12.
张宝玲  汪俊  侯氢 《中国物理 B》2011,20(3):36105-036105
In this paper,the pressure state of the helium bubble in titanium is simulated by a molecular dynamics(MD) method.First,the possible helium/vacancy ratio is determined according to therelation between the bubble pressure and helium/vacancy ratio;then the dependences of the helium bubble pressure on the bubble radius at different temperatures are studied.It is shown that the product of the bubble pressure and the radius is approximately a constant,a result justifying the pressure-radius relation predicted by thermodynamics-based theory for gas bubble.Furthermore,a state equation of the helium bubble is established based on the MD calculations.Comparison between the results obtained by the state equation and corresponding experimental data shows that the state equation can describe reasonably the state of helium bubble and thus could be used for Monte Carlo simulations of the evolution of helium bubble in metals.  相似文献   

13.
The melting curve of MgSiO分子动力学 MgSiO3钙钛矿 熔化温度 高压melting temperature, molecular dynamics, high pressureProject supported by the National Natural Science Foundation of China (Grant Nos 10274055 and 10376021),the Natural Science Foundation of Gansu Province, China (Grant No 3ZS051-A25-027) and the Scientific Research Foundation of Education Bureau of Gansu Province, China (Grant No 0410-01).2005-01-125/8/2005 12:00:00 AMThe melting curve of MgSiO3 perovskite is simulated using molecular dynamics simulations method at high pressure. It is shown that the simulated equation of state of MgSiO3 perovskite is very successful in reproducing accurately the experimental data. The pressure dependence of the simulated melting temperature of MgSiO3 perovskite reproduces the stability of the orthorhombic perovskite phase up to high pressure of 130GPa at ambient temperature, consistent with the theoretical data of the other calculations. It is shown that its transformation to the cubic phase and melting at high pressure and high temperature are in agreement with recent experiments.  相似文献   

14.
利用分子动力学方法结合有效的对势,模拟了下地幔条件下钙钛矿结构MgSiO3的熔化曲线.研究表明,分子动力学模拟结果精确地再现了广泛压强范围内钙钛矿结构MgSiO3的状态方程,并且熔化曲线与最新的实验结果也符合的很好.在压强上升到下地幔压强范围内,压强低于60 GPa时的钙钛矿结构MgSiO3熔化曲线比较陡,接着变得平缓.在核幔边界压强135 GPa时,钙钛矿结构MgSiO3的熔化温度是6500 K,明显低于Zerr和Boehler实验结果的外推结果.  相似文献   

15.
In situ high pressure energy-dispersive x-ray synchrotron radiation diffraction and resistance experiments are carried out on CaCuMn6O12. Its crystal structure is stable in the measured pressure range. The equation of state of CaCuMn6O12 is obtained from the V/Vo - P relationship (V and Vo are the volumes at pressure P and at atmosphere). The bulk modulus Bo is calculated based on the Birch-Murnaghan equation. Low temperature x-ray diffraction shows no phase transition occurring down to 160K.  相似文献   

16.
The high pressure melting curve of CaSiO3 perovskite is simulated by using the constant temperature and pressure molecular dynamics method combined with effective pair potentials for the first time. The simulated results for the partial radial distribution function all compare well with experiment. The calculated equation of state is very successful in accurately reproducing the recent experimental data over a wide pressure range. The predicted high pressure melting curve is in good agreement with the experimental ones, and the melting curve up to the core–mantle boundary pressure, being very steep at lower pressures, rapidly flattens on increasing pressure. The present results also suggest the validity of the experimental data of Zerr and Boehler.  相似文献   

17.
Shell-model molecular dynamics simulation has been performed to investigate the melting of the major Earth-forming mineral CaO at elevated temperatures and high pressures, based on thermal instability analysis. The interatomic potential is taken to be the sum of effective pair-wise additive Coulomb, van der Waals attraction, and repulsive interactions. It is shown that the simulated molar volume of CaO is successful in reproducing recent experimental data and our DFT-GGA calculations up to the core–mantle boundary pressure of 135 GPa. The pressure dependence of the simulated high pressure melting temperature of CaO is in good agreement with the results obtained from the Lindemann melting equation at a pressure of below 7 GPa. The extrapolated melting temperatures are in good agreement with the results obtained from Wang’s empirical model up to 60 GPa. The predicted high pressure melting curve, being very steep at lower pressures, rapidly flattens on increasing pressure. The thermodynamic properties of the rocksalt phase of CaO are summarized in the 0–135 GPa pressure range and for temperatures up to 9300 K.  相似文献   

18.
Kinematic and thermodynamic parameters of shock-compressed liquid nitrogen are measured behind the front of a plane shock wave using plane wave and hemispherical shock wave generators. In these experiments, high values of compression parameters (shock-compressed hydrogen density? ≈ 3.25 g/cm3 and temperature T≈ 56000 K at a pressure of P ≈ 265 GPa) are attained. The density, pressure, temperature, and electrical conductivity of the nonideal plasma of shock-compressed liquid nitrogen are measured. A nearly isochoric behavior of the nitrogen shock adiabat is observed in the pressure range P = 100–300 GPa. The thermodynamics of shock-compressed nitrogen is an alyzed using the model of the equation of state in the quasi-chemical representation (SAHA code) as well as the semiempirical wide-range equation of state developed at the Institute of Experimental Physics. Experimental results are interpreted on the basis of calculations as the fixation of the boundary of transition of shock-compressed nitrogen from the polymer phase to the state of a strongly nonideal plasma at P ≈ 100 GPa, ? ≈ 3.4 g/cm3.  相似文献   

19.
本文从L-J维里状态方程、L-J径向状态方程,TIP4P维里状态方程以及TIP4P径向状态方程四种模型出发,利用分子动力学模拟技术,进行了湿空气性质的研究.对不同状态方程的模拟结果的稳定性进行了探讨,发现径向状态方程的稳定性要好于维里状态方程,最后采用径向分布方程及TIP4P模型,模拟了湿空气的性质,结果表明湿空气在低温、高压和高含湿量下,其性质不再接近于理想气体的性质.  相似文献   

20.
董丽芳  马博琴  王志军 《中国物理》2004,13(10):1597-1600
The behaviour of electrons in CH_{4}/H_{2} gas mixture in electron-assisted chemical vapour deposition of diamond is investigated using Monte Carlo simulation. The electron drift velocity in gas mixture is obtained over a wide range of E/P (the ratio of the electric field to gas pressure) from 1500 to 300000 (V/m kPa^{-1}). The electron energy distribution and average energy under different gas pressure (0.1-20kPa) and CH_{4} concentration (0.5%-10.0%) are calculated. Their effects on the diamond growth are also discussed. It is believed that these results will be helpful to the selection of optimum experimental conditions for high quality diamond film deposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号