首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper reports on the preparation, characterization and optical properties of transparent Ba(Co2x Ti1?x )O3 (0 ≤ x ≤ 0.06) thin films prepared by sol–gel method and deposited on fused quartz substrate by spin-coating technique. Their formation is confirmed by X-ray diffraction patterns, energy dispersive X-ray spectrometry and Fourier transformed infrared measurements. Hitherto unreported near-band-gap photoluminescence in ultraviolet, at 378 nm (3.28 eV), of exciton origin is observed which remains unaffected with change in excitation wavelength from 320 to 350 nm. A weak defect emission appears in green region. For larger excitation wavelength, i.e., 488 nm, emission arising from localized states again occurs in green region but with lower energy. The occurrence of efficient violet–blue PL emission is related to ‘direct’ band gap and shallow levels with high optical band gap values. Analysis of band gap variation with dopant concentration, determined using Tauc’s plot assuming them both of ‘direct’ and ‘indirect’ nature, also indicates the ‘direct’ nature. Co+2 ions as dopants promote a decrease of band gap of films linearly. Scanning electron micrographs show the granular and flakes-like surface growth. Atomic force microscopy images show the presence of ribbon-like nanostructured grains throughout the surface of the films which is smooth with small values of surface roughness.  相似文献   

2.
The amorphous Ge8Sb2Te11thin films with varying thickness are thermally deposited on well-cleaned glass substrate from its polycrystalline bulk. Absence of any sharp peak confirms the amorphous nature of deposited films. Thickness-dependent electrical and optical properties including dc-activation energy, sheet resistivity, optical band gap, band tailing parameter, etc. of Ge8Sb2Te11thin films have been studied. The optical parameters have been calculated from transmission, reflection and absorbance data in the spectral range of 200–1100 nm. It has been found that optical band gap and band tailing parameter decreases with the increase in Ge8Sb2Te11thin films thickness. The dc-activation energy and sheet resistivity decreases while the crystallization temperature of the amorphous Ge8Sb2Te11 films increases with the increase in thickness of the films. The decrease of the sheet resistivity has been substantiated quantitatively using the classical size-effect theory. These results have been explained on the basis of rearrangements of defects and disorders in the amorphous chalcogenide system.  相似文献   

3.
The thin films of CdS1-xSex were successfully deposited over glass substrates by chemical bath deposition technique. Cadmium acetate, thiourea and sodium selenosulfate were used as source materials for Cd2+, S2? and Se2? ions, while 2-mercaptoethanol was used as capping agent. The various deposition conditions such as precursor concentration, deposition temperature, pH and deposition time were optimized for the deposition of CdS1-xSex thin films of good quality and the films were annealed at 200° and 300 °C. The structural, morphological, chemical and optical properties were examined by various characterization techniques and discussed in detail. The optical band gap of CdS1-xSex thin film samples were estimated and found in the range from 2.11 to 1.79 eV for as-deposited and annealed thin films.  相似文献   

4.
Amorphous As x Se70Te30?x thin films with (0≤x≤30 at.%) were deposited onto glass substrates by using thermal evaporation method. The transmission spectra T(λ) of the films at normal incidence were measured in the wavelength range 400–2500 nm. A straightforward analysis proposed by Swanepoel based on the use of the maxima and minima of the interference fringes has been used to drive the film thickness, d, the complex index of refraction, n, and the extinction coefficient, k. The dispersion of the refractive index is discussed in terms of the single-oscillator Wemple and DiDomenico model (WDD). Increasing As content is found to affect the refractive index and the extinction coefficient of the As x Se70Te30?x films. With increasing As content the optical band gap increases while the refractive index decreases. The optical absorption is due to allowed indirect transition. The chemical bond approach has been applied successfully to interpret the increase of the optical gap with increasing As content.  相似文献   

5.
Shabir Ahmad  K. Asokan 《哲学杂志》2015,95(12):1309-1320
Present work focuses on the effect of swift heavy ion (SHI) irradiation of 100 MeV F7+ ions by varying the fluencies in the range of 1 × 1012 to 1 × 1013 ions/cm2 on the morphological, structural and optical properties of polycrystalline thin films of Ga10Se90-xAlx (x = 0, 5). Thin films of ~300 nm thickness were deposited on cleaned Al2O3 substrates by thermal evaporation technique. X-ray diffraction pattern of investigated thin films shows the crystallite growth occurs in hexagonal phase structure for Ga10Se90 and tetragonal phase structure for Ga10Se85Al5. The further structural analysis carried out by Raman spectroscopy and scanning electron microscopy verifies the defects or disorder of the investigated material increases after SHI irradiation. The optical parameters absorption coefficient (α), extinction coefficient (K), optical band gap (Eg) and Urbach’s energy (EU) are determined from optical absorption spectra data measured from spectrophotometry in the wavelength range 200–1100 nm. It was found that the values of absorption coefficient and extinction coefficient increase while the value of optical band gap decreases with the increase in ion fluence. This post irradiation change in the optical parameters was interpreted in terms of bond distribution model.  相似文献   

6.
Ternary ZnCdO thin films oriented along c-axis have been successfully deposited on p-Si (1 0 0) substrates using sol–gel spin coating route. To optimize most suitable annealing temperature for the Zn1−xCdxO thin films; these films with selected cadmium content x = 0.10 were treated at annealing temperatures from 300 °C up to 800 °C in oxygen ambient after deposition. The structural and optical properties of deposited thin films have been characterized by X-ray diffraction, energy dispersive spectroscopy, atomic force microscopy, UV–Vis spectroscopy, and photoluminescence spectra. The results show that the obtained films possess high crystallinity with wurtzite structure. The crystallite size, lattice parameters, lattice strain and stress in the deposited films are determined from X-ray diffraction analysis. The band gap energy increased as a function of annealing temperatures as observed from optical reflectance spectra of samples. The presence of Cd in the deposited films is confirmed by energy dispersive spectrum and it is observed that Cd re-evaporate from the lattice with annealing. The photoluminescence measurements as performed at room temperature did not exhibit any luminescence related to oxygen vacancies defects for lower annealing temperatures, as normally displayed by ZnO films. The green yellow luminescence associated to these defects was observed at higher annealing temperatures (≥700 °C).  相似文献   

7.
Thin films of Ga10Se80Hg10 have been deposited onto a chemically cleaned Al2O3 substrates by thermal evaporation technique under vacuum. The investigated thin films are irradiated by 60Co γ-rays in the dose range of 50–150 kGy. X-ray diffraction patterns of the investigated thin films confirm the preferred crystallite growth occurs in the tetragonal phase structure. It also shows, the average crystallite size increases after γ-exposure, which indicates the crystallinity of the material increases after γ-irradiation. These results were further supported by surface morphological analysis carried out by scanning electron microscope and atomic force microscope which also shows the crystallinity of the material increases with increasing the γ-irradiation dose. The optical transmission spectra of the thin films at normal incidence were investigated in the spectral range from 190 to 1100 nm. Using the transmission spectra, the optical constants like refractive index (n) and extinction coefficient (k) were calculated based on Swanepoel’s method. The optical band gap (Eg) was also estimated using Tauc’s extrapolation procedure. The optical analysis shows: the value of optical band gap of investigated thin films decreases and the corresponding absorption coefficient increases continuously with increasing dose of γ-irradiation.  相似文献   

8.
In this research, Cu-doped TiO2 thin films have been successfully deposited onto a glass substrate by Sol–gel technique using dip coating method. The films were annealed at different annealing temperatures (400–500 °C) for 1 h. The structural, optical and electrical properties of the films were investigated and compared using X-ray Diffraction, UV–visible spectrophotometer and 4-point probe method. Optical analysis by mean transmittance T(λ) and absorption A(λ) measurements in the wavelength range between 300 to 800 nm allow us to determine the indirect band gap energy. DRX analysis of our thin films of TiO2:Cu shows that the intensities of the line characteristic of anatase phase increasing in function of the temperature.  相似文献   

9.
Tin sulfide thin films have been grown on glass substrates by chemical bath deposition technique (CBD) at room temperature and irradiated with UV light source of wavelength 355 nm. The effect of UV illumination on the physical properties of the films was compared with that of the as-prepared film. Though the thickness of the films was unaltered after illumination, the structural, optical and electrical properties changed considerably. Structural studies showed the polycrystalline nature of the UV-illuminated sample, whereas the as-prepared film was mono crystalline. Both films were orthorhombic structure with Sn2S3 phase. The optical properties of the films were systematically studied using the optical absorbance and reflection spectra. Studies on the reflection spectra showed higher reflectance in visible and infrared region for the UV-illuminated films and lower reflectance in the infrared region for the as-prepared one. The variation of the refractive index of the samples was also analyzed. The optical absorption coefficient and the optical band gap energy of the films were evaluated. The irradiated film exhibited lower band gap of 1.74 eV than the value of as-prepared film, i.e., 1.77 eV. The measured resistivity of the tin sulfide thin films was found to be of the order of 108 and 10Ωcm for UV-illuminated and as-prepared films, respectively. The SEM images showed the presence of worm-like nanostructures with almost similar appearance in both the films.  相似文献   

10.
The present paper reports the effect of Bi addition on the optical behavior (optical band gap and refractive index) of Ge20Te80?x Bi x (where x=0, 1.5, 2.5, 5.0) glassy alloys by analyzing the transmission and reflection spectra of their thin films in the 900–2400 nm range. Films are deposited on glass substrate using a thermal evaporation technique under vacuum. Various optical parameters viz. refractive index, extinction coefficient, absorption coefficient, optical band gap, etc. are determined and the effect of Bi incorporation on these parameters is studied. The refractive index has been found to increase with increasing Bi content over the entire spectral range and this behavior is due to the increased polarizability of the larger Bi atomic radius (1.46 Å) compared to Te atomic radius (1.36 Å). Dispersion energy, E d , average energy gap, E 0 and static refractive index, n 0 is calculated using Wemple–DiDomenico model. Optical band gap is estimated using Tauc’s extrapolation and is found to decrease from 0.86 to 0.73 eV with the Bi addition. This behavior of the optical band gap is interpreted in terms of the electronegativity difference of the atoms involved and the cohesive energy of the system.  相似文献   

11.
Cadmium selenide (CdSe) thin films were deposited on a glass substrate using the thermal evaporation method at room temperature. The changes in the optical properties (optical band gap and absorption coefficient) after irradiation by TEA N2 laser at different energies were measured in the wavelength range 190–800 nm using a spectrophotometer. It was found that the optical band gap is decreased after irradiating the thin films. The samples were characterized using X-ray diffraction (XRD), and the grain size of the CdSe thin film was calculated from XRD data, which was found to be 41.47 nm as-deposited. It was also found that grain size increases with laser exposure. The samples were characterized using a scanning electron microscope and it was found that big clusters were formed after irradiation by TEA N2 laser.  相似文献   

12.
PbI2 thin films were deposited on glass substrates via chemical bath deposition. The characteristics of PbI2 thin films were examined through their structural and optical properties. X-ray diffraction spectra showed the presence of rhombohedral structure and atom planes were subject to change with the pH of the bath. Scanning electron microscope indicated uniform distribution of grains. Optical properties were examined via UV–VIS; optical spectrum of the thin films was measured at the range of 200–1100 nm wavelength. Optimum pH levels for producing thin films were found to be pH 4–5. It has been observed that transmission and optical band gap (E g) increased with the pH of the bath, which varied between 66–95 and 2.24–2.50 %, respectively; on the other hand film thickness of PbI2 thin films was decreased with the pH of the bath. Energy-dispersive X-ray spectroscopy analysis were in accordance with theoretical value of PbI2 at pH = 4 and 5. Refractive index was negatively correlated with pH of the chemical bath; it has been calculated as 1.97, 1.40, 1.29 and 1.24 for the films produced at pH 2, 3, 4 and 5. The results of the study were compared with similar studies in the literature.  相似文献   

13.
We have performed first-principles method to investigate structural and electronic properties of InNxP1?x ternary semiconductor alloy in full range (0 ≤ x ≤ 1) using density functional theory. We have used modified Becke–Johnson potential to obtain accurate band gap results. From the electronic band structure calculation we have found that InNxP1?x become metal between 47 and 80% of nitrogen concentration. Additional to our band gap calculations, we have also used the band anticrossing model. The band anticrossing model supplies a simple, analytical expression to calculate the physical properties, such as the electronic and optical properties, of III-NxV1?x alloys. The knowledge of the electron density of states is required to understand and clarify some properties of materials such as the band structures, bonding character and dielectric function. In order to have a deeper understanding of these properties of the studied materials, the total and partial density of states has been calculated. Finally, we have calculated the total bowing parameter b of studied alloys, together with three contributions bVD, bCE, and bSR due to volume deformation, different atomic electron negativities and structural relaxation, respectively.  相似文献   

14.
Zinc oxide (ZnO) and aluminium (Al) doped zinc oxide (AZO) thin films have been fabricated by spray pyrolysis technique in normal atmospheric condition. Samples of different Al-concentrations (0–5% Al) were deposited at 350 °C onto glass substrate to study the structural, morphological, optical and photoluminescence properties. X-ray diffraction study confirms that the films are polycrystalline having hexagonal structure. SEM images show that the films have rope and tube like morphology. Optical properties, such as transmittance, optical band gap, extinction coefficient, refractive index, optical conductivity, dielectric constants and electron energy loss functions were analyzed and discussed. Results show that the optical parameters have been changed significantly with Al-doping concentration. The photoluminescence spectra indicate that the PL peaks originated from deep level emissions (DLE) with different intensities for ZnO and Al-doped ZnO films.  相似文献   

15.
Optical band gap of amorphous, crystallized, laser induced amorphous and laser induced crystallized films of Se75S25−xAgx (x=4, 6 and 8) glassy alloys was studied from absorption spectra. The amorphous and crystallized films were induced by pulse laser for 10 min. After laser irradiation on amorphous and crystalline films, optical band gap was measured. It has been found that the mechanism of the optical absorption follows the rule of indirect transition. The amorphous thin films show an increase in the optical band gap, while the crystallized (thermally annealed) thin films show a decrease in the optical band gap by inducing laser irradiation. Crystallization and amorphization of chalcogenide films were accompanied with the change in the optical band gap. The change in optical energy gap could be determined by identification of the transformed phase. These results are interpreted in terms of concentration of localized states due to shift in Fermi level.  相似文献   

16.
The effect of laser irradiation on the optical properties of thermally evaporated Se100?x Te x (x=8, 12, 16) chalcogenide thin films has been studied. The result shows that the irradiation causes a shift in the optical gap. The results have been analyzed on the basis of laser irradiation-induced defects in the film. The width of the tail of localized state in the band gap has been evaluated using the Urbach edge method. As the irradiation time increases, the values of the optical energy gap for all compositions decrease, while tail energy width increases. It is also observed that the optical energy gap decreases with increasing Te content in the alloy. These changes are a consequence of an increment in disorder produced by laser irradiation in the amorphous structure of thin film.  相似文献   

17.
Electrical and optical studies have been carried out on aluminium-modified Ge2Sb2Te5 thin films to check its applicability as an active material in optical and electrical memory storage devices. Five polycrystalline bulk samples were prepared with compositions: Alx(Ge2Sb2Te5)1?x; x = 0, 0.08, 0.14, 0.21, 0.25. Amorphous thin films were deposited from the polycrystalline bulk by thermal evaporation. Temperature-dependent resistance shows the increase in crystallization temperature of Ge–Sb–Te films on aluminium addition. Activation energy for conduction, conductivity, optical band gap, coefficient of refraction and extinction coefficient are studied with respect to Al content in both amorphous and crystalline phases of Ge–Sb–Te alloy films.  相似文献   

18.
Tailoring of the refractive index of optical thin films has been a very fascinating as well as challenging topic for developing new generation optical coatings. In the present work a novel Gd2O3/SiO2 composite system has been experimented and probed for its superior optical properties through phase modulated spectroscopic ellipsometry, spectrophotometry and atomic force microscopy. The optical parameters of the composite films have been evaluated using Tauc-Lorentz (TL) formulations. In order to derive the growth dependent refractive index profiles, each sample film has been modeled as an appropriate multilayer structure where each sub-layer was treated with the above TL parameterizations. All codeposited films demonstrated superiority with respect to the band gap and morphological measurements. At lower silica mixing compositions such as in 10-20% level, the composite films depicted superior spectral refractive index profile, band gap as well as the morphology. This aspect highlighted the fact that microstructural densifications in composite films can override the chemical compositions while deciding the refractive index and optical properties in such thin films.  相似文献   

19.
A series of CdxZn1−xS thin films have been deposited on glass substrates using spray pyrolysis technique. The crystallinity and microstructure of CdxZn1−xS thin films have been investigated by X-ray diffraction (XRD). Based on the results of Hall measurements, the films obtained were an n-type semiconductor. The X-ray data analysis of CdxZn1−xS thin films showed that the grain size of the CdxZn1−xS increased with increase in Cd composition. It is observed that the band gap increases as the Cd composition decreases. The results also showed a blue shift of absorption edge of optical transmission spectra is increases as Zn ratio increases. The effects of Cd composition on the structural and optical properties of CdxZn1−xS thin films were related to their grain size, stress and carrier concentration.  相似文献   

20.
Undoped SnO2 thin films have been deposited on amorphous glass substrates with different precursor solution volume (10, 15, 20 and 25 ml) using simple and cost-effective nebulized spray pyrolysis technique. The influence of precursor solution on structural, optical, photoluminescence and electrical properties had been studied. The X-ray diffraction spectra prove the polycrystalline nature of SnO2 with tetragonal structure. All the films show a preferred growth orientation along (110) diffraction plane. The average transmittance of SnO2 thin films varied between 82 and 75% in the visible as well as IR region. The band gap energy decreases from 3.74 to 3.64 eV corresponding to direct transitions with the precursor solution volume had increased from 10 to 20 ml and then increased as 3.72 eV for 25 ml. SEM pictures demonstrated polyhedrons like grains. EDX confirmed the existence of Sn and O elements in all the prepared SnO2 thin films. Photoluminescence spectra at room temperature revealed that the four emission bands in all the samples such as sharp dominant peak at 361 nm with shoulder peak at 377 nm (UV region), a broad and low intensity peak at 492 nm (blue region) and 519 nm (green region). The electrical parameters were examined by Hall effect measurements, which demonstrated that the film prepared at 20 ml precursor solution volume possess minimum resistivity 2.76?×?10?3 Ω-cm with activation energy 0.10 eV and maximum figure of merit 1.54?×?10?2 (Ω/sq)?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号