首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
In the laser excitation of ultracold atoms to Rydberg states, we observe a dramatic suppression caused by van der Waals interactions. This behavior is interpreted as a local excitation blockade: Rydberg atoms strongly inhibit excitation of their neighbors. We measure suppression, relative to isolated atom excitation, by up to a factor of 6.4. The dependences of this suppression on both laser irradiance and atomic density are in good agreement with a mean-field model. These results are an important step towards using ultracold Rydberg atoms in quantum information processing.  相似文献   

2.
Rydberg atoms provide a wide range of possibilities to tailor interactions in a quantum gas. Here, we report on Rydberg excitation of Bose-Einstein condensed 87Rb atoms. The Rydberg fraction was investigated for various excitation times and temperatures above and below the condensation temperature. The excitation is locally blocked by the van der Waals interaction between Rydberg atoms to a density-dependent limit. Therefore, the abrupt change of the thermal atomic density distribution to the characteristic bimodal distribution upon condensation could be observed in the Rydberg fraction. The observed features are reproduced by a simulation based on local collective Rydberg excitations.  相似文献   

3.
We report on strong van der Waals blockade in two-photon Rydberg excitation of ultracold magnetically trapped 87Rb atoms. The excitation dynamics was investigated for a large range of densities and laser intensities and shows a full saturation and a strong suppression with respect to single-atom behavior. The observed scaling of the initial increase with density and laser intensity provides evidence for coherent collective excitation. This coherent collective behavior, that was observed for up to several thousand atoms per blockade volume, is generic for all mesoscopic systems which are able to carry only one single quantum of excitation.  相似文献   

4.
We present evidence for molecular resonances in a cold dense gas of rubidium Rydberg atoms. Single UV photon excitation from the 5s ground state to np Rydberg states (n=50-90) reveals resonances at energies corresponding to excited atom pairs (n-1)d+ns. We attribute these normally forbidden transitions to avoided crossings between the long-range molecular potentials of two Rydberg atoms. These strong van der Waals interactions result in avoided crossings at extremely long range, e.g., approximately 58 000 times the Bohr radius (a(0)) for n=70.  相似文献   

5.
When ground state atoms are excited to a Rydberg state, van der Waals interactions among them can lead to a strong suppression of the excitation. Despite the strong interactions the evolution can still be reversed by a simple phase shift in the excitation laser field. We experimentally prove the coherence of the excitation in the strong blockade regime by applying an "optical rotary echo" technique to a sample of magnetically trapped ultracold atoms, analogous to a method known from nuclear magnetic resonance. We additionally measured the dephasing time due to the interaction between the Rydberg atoms.  相似文献   

6.
刘硕  白建东  王杰英  何军  王军民 《物理学报》2019,68(7):73201-073201
基于成熟的光纤激光器、光纤放大器及高效激光频率转换技术,我们在实验中研制了一套瓦级输出的窄线宽连续波单频可调谐318.6 nm紫外激光系统,并在室温铯原子气室中实现了6S_(1/2)—nP_(3/2)(n=70—94)单光子跃迁里德伯激发.借助由铯原子6S_(1/2)(F=4)基态、6P_(3/2)(F′=5)激发态和nP_(3/2)(n=70—94)里德伯态构成的V型三能级系统,通过频率锁定于铯原子6S_(1/2)(F=4)—6P_(3/2)(F′=5)超精细跃迁的852.3 nm探测光束的吸收减弱信号获得了里德伯态的信息,并利用高精度波长计测量了铯原子nP_(3/2)(n=70—94)里德伯态的量子亏损值.经过与理论计算值的变化趋势进行对比,我们认为由于原子气室的里德伯屏蔽效应并不能完全屏蔽外部直流电场,铯原子气室内存在残余的直流电场,影响了对里德伯态的量子亏损值的实验测量.利用残余直流电场的Stark效应理论模型及其与有效主量子数n*的依赖关系,对铯原子里德伯态的量子亏损实验测量值进行了修正.修正后的铯原子nP_(3/2)(n=70—94)态量子亏损测量值为3.5591±0.0007,与理论计算值相吻合.  相似文献   

7.
Coupling by the resonant dipole-dipole energy transfer between cold cesium Rydberg atoms is investigated using time-resolved narrow-band deexcitation spectroscopy. This technique combines the advantage of efficient Rydberg excitation with high-resolution spectroscopy at variable interaction times. Dipole-dipole interaction is observed spectroscopically as avoided level crossing. The coherent character of the process is linked to back and forth transfer in the np + np <--> ns + (n + 1)s reaction. Decoherence in the ensemble has two different origins: the atom motion induced by dipole-dipole interaction and the migration of the s-Rydberg excitation in the environment of p-Rydberg atoms.  相似文献   

8.
This paper reports on the results of experiments with cold rubidium Rydberg atoms in a magneto-optical trap. The specific feature of the experiments is the excitation of Rydberg atoms in a small volume within a cloud of cold atoms and the sorting of measured signals and spectra according to the number of detected Rydberg atoms. The effective lifetime of the 37P Rydberg state and its polarizability in a weak electric field are measured. The results obtained are in good agreement with theoretical calculations. It is demonstrated that the localization of the excitation volume in the vicinity of the zero-magnetic-field point makes it possible to improve the spectral resolution and to obtain narrow microwave resonances in Rydberg atoms without switching off the quadrupole magnetic field of the trap. The dependence of the amplitude of dipole-dipole interaction resonances in Rydberg atoms on the number of atoms is measured. This dependence exhibits a linear behavior and agrees with the theory for a weak dipole-dipole interaction.  相似文献   

9.
High resolution laser Stark excitation of np (60相似文献   

10.
We show that the probability distributions for the number of Rydberg excitations in small ensembles of cold atoms, excited using short (100 ns) laser pulses, can be highly sub-Poissonian. The phenomenon occurs if the atom density and the principal quantum number of the excited Rydberg level are sufficiently high. Our observations are attributed to a blockade of the Rydberg atom excitation.  相似文献   

11.
The dipole blockade effect at laser excitation of mesoscopic ensembles of Rydberg atoms lies in the fact that the excitation of one atom to a Rydberg state blocks the excitation of other atoms due to the shift in the collective energy levels of interacting Rydberg atoms. It is used to obtain the entangled qubit states based on single neutral atoms in optical traps. In this paper, we present our experimental results on the observation of the dipole blockade for mesoscopic ensembles of 1–5 atoms when they are detected by the selective field ionization method. We have investigated the spectra of the three-photon laser excitation 5S1/2 → 5P3/2 → 6S1/2 → nP3/2 of cold Rydberg Rb atoms in a magneto-optical trap. We have found that for mesoscopic ensembles this method allows only a partial dipole blockage to be observed. This is most likely related to the presence of parasitic electric fields reducing the interaction energy of Rydberg atoms, the decrease in the probability of detecting high states, and the strong angular dependence of the interaction energy of Rydberg atoms in a single interaction volume.  相似文献   

12.
We demonstrate two schemes for the coherent excitation of Rydberg atoms in an ultracold gas of rubidium atoms employing the three-level ladder system 5S1/2-5P3/2-n?j. In the first approach rapid adiabatic passage with pulsed laser fields yields Rydberg excitation probabilities of 90% in the center of the laser focus. In a second experiment two-photon Rydberg excitation with continuous-wave fields is applied which results in Rabi oscillations between the ground and Rydberg state. The experiments represent a prerequisite for the control of interactions in ultracold Rydberg gases and the application of ultracold Rydberg gases for quantum information processing.  相似文献   

13.
We demonstrate experimentally the production of Rydberg positronium (Ps) atoms in a two-step process, comprising incoherent laser excitation, first to the 2(3)P state and then to states with principal quantum numbers ranging from 10 to 25. We find that excitation of 2(3)P atoms to Rydberg levels occurs very efficiently (~90%) and that the ~25% overall efficiency of the production of Rydberg atoms is determined almost entirely by the spectral overlap of the primary excitation laser and the Doppler broadened width of the 1 (3)S-2(3)P transition. The observed efficiency of Rydberg Ps production can be explained if stimulated emission back to the 2P states is suppressed, for example, by intermixing of the Rydberg state Stark sublevels. The efficient production of long-lived Rydberg Ps in a high magnetic field may make it possible to perform direct measurements of the gravitational free fall of Ps.  相似文献   

14.
The vibrationally inelastic scattering of Rydberg H atoms (n = 30-50) from N2 and O2 at E(coll) = 1.84 eV was studied as a function of laboratory deflection angle. On average, 4 times more vibrational excitation was observed in collisions with O2 than with N2. Vibrational excitation of O2 results largely from collisions in which an electron is briefly transferred from O2 to the proton core, while the Rydberg electron remains a spectator. This provides further evidence that the free electron model applies to low energy collisions involving the ionic core leading to substantial momentum transfer.  相似文献   

15.
Microwave ionization of Rydberg atoms is well described as the onset of classical chaos when the microwave frequency omega is less than the Kepler frequency 1/n(3). However, when omega>1/n(3), i.e., at high scaled frequency Omega=omegan(3)>1, classical ionization is predicted to be suppressed by quantum interference, an analogue to Anderson localization in a solid. Using 17.55 GHz microwave fields we have observed the ionization of Sr Rydberg atoms in the regime 1相似文献   

16.
Cold, dense Rydberg gases produced in a cold-atom trap are investigated using spectroscopic methods and time-resolved electron counting. Optical excitation on the discrete Rydberg resonances reveals long-lasting electron emission from the Rydberg gas ( >20 ms). Our observations are explained by lm-mixing collisions between Rydberg atoms and slow electrons that lead to the population of long-lived high-angular-momentum Rydberg states. These atoms thermally ionize slowly and with large probabilities.  相似文献   

17.
We demonstrate the coherent excitation of a mesoscopic ensemble of about 100 ultracold atoms to Rydberg states by driving Rabi oscillations from the atomic ground state. We employ a dedicated beam shaping and optical pumping scheme to compensate for the small transition matrix element. We study the excitation in a weakly interacting regime and in the regime of strong interactions. When increasing the interaction strength by pair state resonances, we observe an increased excitation rate through coupling to high angular momentum states. This effect is in contrast to the proposed and previously observed interaction-induced suppression of excitation, the so-called dipole blockade.  相似文献   

18.
We propose a new all-optical method to image individual Rydberg atoms embedded within dense gases of ground state atoms. The scheme exploits interaction-induced shifts on highly polarizable excited states of probe atoms, which can be spatially resolved via an electromagnetically induced transparency resonance. Using a realistic model, we show that it is possible to image individual Rydberg atoms with enhanced sensitivity and high resolution despite photon-shot noise and atomic density fluctuations. This new imaging scheme could be extended to other impurities such as ions, and is ideally suited to equilibrium and dynamical studies of complex many-body phenomena involving strongly interacting particles. As an example we study blockade effects and correlations in the distribution of Rydberg atoms optically excited from a dense gas.  相似文献   

19.
裴栋梁  何军  王杰英  王家超  王军民 《物理学报》2017,66(19):193701-193701
里德伯态光谱是测量里德伯态能级结构和中性原子间相互作用的常用技术手段,特别是高精度的里德伯光谱,可以测量室温原子气室中由偶极相互作用等导致的原子能级频移.在实验中利用反向的852 nm激光和509 nm激光实现了室温原子气室中铯原子6S_(1/2)—6P_(3/2)—57S(D)跃迁的级联双光子激发,实现了里德伯态原子的制备.基于阶梯型电磁诱导透明获得了铯原子里德伯态的高分辨光谱.实验中,基于速度选择的射频边带调制技术,对光谱信号进行了频率标定,测量了铯原子里德伯态57D_(3/2)和57D_(5/2)的精细分裂,分裂间隔为(354.7±2.5)MHz,与理论计算结果基本一致.速度选择的射频调制光谱可以实现里德伯态原子的能级分裂测量,其测量精度对于单光子跃迁的绝对激光频率不敏感;实验中影响57D_(3/2)和57D_(5/2)精细分裂间隔测量精度的主要因素是功率加宽导致的电磁感应透明信号的展宽和509 nm激光频率扫描的非线性.  相似文献   

20.
车俊岭  张好  冯志刚  张临杰  赵建明  贾锁堂 《物理学报》2012,61(4):43205-043205
利用双光子激发超冷原子获得70S超冷Cs Rydberg原子, 采用脉冲场电离法使Rydberg原子电离, 并用微通道板测量Rydberg原子的信号. 改变激发光和电离电场脉冲的延迟时间和激发光脉冲的宽度, 研究70S超冷Cs Rydberg原子之间的相互作用和动力学演化过程. 利用黑体辐射导致的态转移和相互作用碰撞电离解释了实验结果,实验结果和理论相一致.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号