首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
The prompt fission neutron spectra for the neutron-induced fission of 233U for low energy neutrons (below 6 MeV) are calculated using nuclear evaporation theory with a semi-empirical method, in which the partition of the total excitation energy between the fission fragments for the nth+233U fission reactions is determined by the available experimental and evaluation data. The calculated prompt fission neutron spectra agree well with the experimental data. The proportions of high-energy neutrons of prompt fission neutron spectrum versus incident neutron energies are investigated with the theoretical spectra, and the results are consistent with the systematics. The semi-empirical method could be a useful tool for the prompt evaluation of fission neutron spectra.  相似文献   

2.
For the n+235U fission reaction, the total excitation energy partition of the fission fragments, the average neutron kinetic energy <ε>(A) and the total average energies Eγ(A) removed by γ rays as a function of fission fragment mass are given at incident energies up to 20 MeV. The prompt neutron multiplicity as a function of the fragment mass, ν(A), for neutron-induced fission of 235U at different incident neutron energies is calculated. The calculated results are checked with the total average prompt neutron multiplicities ν and compared with the experimental and evaluated data. Some prompt neutron and γ emission mechanisms are discussed.  相似文献   

3.
郑娜  钟春来  樊铁栓 《中国物理 C》2011,35(10):930-934
Properties of prompt fission neutrons from 238U(n, f) are calculated for incident neutron energies below 6 MeV using the multi-modal model, including the prompt fission neutron spectrum, the average prompt fission neutron multiplicity, and the prompt fission neutron multiplicity as a function of the fission fragment mass υ(A) (usually named “sawtooth” data) The three most dominant fission modes are taken into account. The model parameters are determined on the basis of experimental fission fragment data. The predicted results are in good agreement with the experimental data.  相似文献   

4.
Calculations of prompt fission neutron spectra (PFNS) from the 235U(n, f) reaction were performed with a semi-empirical method for En=7.0 and 14.7 MeV neutron energies. The total PFNS were obtained as a superposition of (n,xnf) pre-fission neutron spectra and post-fission spectra of neutrons which were evaporated from fission fragments, and these two kinds of spectra were taken as an expression of the evaporation spectrum. The contributions of (n,xnf) fission neutron spectra on the calculated PFNS were discussed. The results show that emission of one or two neutrons in the (n,nf) or (n,2nf) reactions influences the PFNS shape, and the neutron spectra of the (n,xnf) fission-channel are soft compared with the neutron spectra of the (n,f) fission channel. In addition, analysis of the multiple-chance fission component showed that second-chance fission dominates the PFNS with an incident neutron energy of 14.7 MeV whereas first-chance fission dominates the 7 MeV case.  相似文献   

5.
Low energy neutron induced fission of 235U is studied in the framework of the multi-modal fission model. The fission fragment properties, such as the yields, the average total kinetic energy distribution and the average neutron separation energy, are investigated for incident neutron energies from thermal to 6.0 MeV. The multi-modal fission approach is also used to evaluate the prompt fission neutron multiplicity and spectra for the neutron-induced fission of 235U with an improved version of the Los Alamos model for incident neutrons below the (n, nf) threshold. The three most dominant fission modes are taken into account. The model parameters are determined on the basis of experimental data. The calculated results are in good agreement with the experimental data.  相似文献   

6.
The prompt fission neutron spectra for the neutron-induced fission of 233U for low energy neutrons (below 6 MeV) are calculated using nuclear evaporation theory with a semi-empirical method, in which the partition of the total excitation energy between the fission fragments for the nth+233U fission reactions is determined by the available experimental and evaluation data. The calculated prompt fission neutron spectra agree well with the experimental data. The proportions of high-energy neutrons of prompt fission neutron spectrum versus incident neutron energies are investigated with the theoretical spectra, and the results are consistent with the systematics. The semi-empirical method could be a useful tool for the prompt evaluation of fission neutron spectra.  相似文献   

7.
The improved version of Los Alamos model with the multi-modal fission approach is used to analyse the prompt fission neutron spectrum and multiplicity for the neutron-induced fission of 237Np. The spectra of neutrons emitted from fragments for the three most dominant fission modes (standard Ⅰ, standard Ⅱ and superlong) are calculated separately and the total spectrum is synthesized. The multi-modal parameters contained in the spectrum model are determined on the basis of experimental data of fission fragment mass distributions. The calculated total prompt fission neutron spectrum and multiplicity are better agreement with the experimental data than those obtained from the conventional treatment of the Los Alamos model.  相似文献   

8.
According to some experimental and evaluated data,the total excitation energy partitioning way between both of the fission fragments was given with a semi-empirical method. With the calculated energy partitioning way,the prompt neutron multiplicity as a function of fragment mass,(A) ,for neutron-induced fission of 235U at En=0.0253 eV,3 MeV,and 5 MeV was calculated. The results are checked with the total average prompt neutron multiplicities  and compared with the experimental and evaluated data.  相似文献   

9.
The 239Pu fission chambers are widely used to measure fission spectrum neutron flux due to a flat response to fast neutrons. However, in the meantime the resonance and thermal neutrons can cause a significant influence on the measurement if they are moderated, which could be eliminated by using 10B and Cd covers. At a column enriched uranium fast neutron critical assembly, the fission reaction rates of 239Pu are measured as 1.791× 10-16, 2.350×10-16 and 1.385× 10-15 per second for 15 mm thick 10B cover, 0.5 mm thick Cd cover, and no cover respectively, while the fission reaction rate of 239Pu is rapidly increased to 2.569× 10-14 for a 20 mm thick polythene covering fission chamber. The average 239Pu fission cross-section of thermal and resonance neutrons is calculated to be 500 b and 24.95 b with the assumption of 1/v and 1/E spectra respectively, then thermal, resonance and fast neutron flux are achieved to be 2.30× 106, 2.24× 106 and 1.04× 108 cm-2·-1.  相似文献   

10.
The properties of neutron-rich boron isotopes are studied in the relativistic continuum Hartree-Bogoliubov theory in coordinate space with NL-SH, PK1 and TM2 effective interactions. Pairing corrections are taken into account by a density dependent force of zero range. The binding energies calculated for these nuclei agree with the experimental data quite well. The neutron-rich nucleus 17B has been predicted to have a two-neutron halo structure in its ground state. The halo structure of 17B is reproduced in a self-consistent way, and this halo is shown to be formed by the valence neutron level 2s1/2.  相似文献   

11.
The prompt fission neutron spectra for the neutron-induced fission of 235U at En < 5 MeV are calculated using nuclear evaporation theory with a semi-empirical model, in which the nonconstant and constant temperatures related to the Fermi gas model are taken into account. The calculated prompt fission neutron spectra reproduce the experimental data well. For the n(thermal)+235U reaction, the average nuclear temperature of the fission fragment, and the probability distribution of the nuclear temperature, are discussed and compared with the Los Alamos model. The energy carried away by γ rays emitted from each fragment is also obtained and the results are in good agreement with the existing experimental data.  相似文献   

12.
According to some experimental and evaluated data, the total excitation energy partitioning way between both of the fission fragments was given with a semi-empirical method. With the calculated energy partitioning way, the prompt neutron multiplicity as a function of fragment mass, (-v)(A), for neutron-induced fission of 235U at En=0.0253 eV, 3 MeV, and 5 MeV was calculated. The results are checked with the total average prompt neutron multiplicities (-v) and compared with the experimental and evaluated data.  相似文献   

13.
Low energy neutron induced fission of ~(235)U is studied in the framework of the multi-modal fission model. The fission fragment properties, such as the yields, the average total kinetic energy distribution and the average neutron separation energy, are investigated for incident neutron energies from thermal to 6.0 MeV. The multi-modal fission approach is also used to evaluate the prompt fission neutron multiplicity and spectra for the neutron-induced fission of ~(235)U with an improved version of the Los Alamos model for incident neutrons below the (n, nf) threshold. The three most dominant fission modes are taken into account. The model parameters are determined on the basis of experimental data. The calculated results are in good agreement with the experimental data.  相似文献   

14.
For the n+<'235>U fission reaction, the total excitation energy partition of the fission fragments, the average neutron kinetic energy <ε>(A) and the total average energies E<,γ>(A) removed by γ rays as a function of fission fragment mass are given at incident energies up to 20 MeV. The prompt neutron multiplicity as a function of the fragment mass, ν(A), for neutron-induced fission of <'235>U at different incident neutron energies is calculated. The calculated results are checked with the total average prompt neutron multiplicities ν and compared with the experimental and evaluated data. Some prompt neutron and γ emission mechanisms are discussed.  相似文献   

15.
何铁  肖军  安力  阳剑  郑普 《物理学报》2018,67(21):212501-212501
瞬发裂变中子谱(prompt fission neutron spectrum,PFNS)是用于核实验诊断过程中十分重要的参数数据,传统的测量主锕系核素(U,Pu)PFNS的技术手段是采用裂变室,利用裂变碎片标识裂变中子,通过中子飞行时间技术获得裂变中子谱.目前出现了一种新的用于PFNS测量的技术,其原理是基于如下的物理事实:在一次裂变过程中,释放中子的同时伴随着释放7–8个γ射线光子,而非弹性散射效应产生的γ射线光子只有1–2个.据此,可以通过裂变γ射线的多重性将裂变中子和其他杂散中子甄选出来,达到测量PFNS的目的.本文建立了基于裂变γ标识技术的PFNS测量实验系统.利用该系统对252Cf中子源的PFNS进行了实验测量,测量结果与传统的裂变碎片标识法及ENDF/B-VⅡ数据库的标准谱进行了比较,对新方法的裂变标识率以及实验不确定度也一并进行了分析.  相似文献   

16.
Low energy neutron induced fission of 235U is studied in the framework of the multi-modal fission model. The fission fragment properties, such as the yields, the average total kinetic energy distribution and the average neutron separation energy, are investigated for incident neutron energies from thermal to 6.0 MeV. The multi-modal fission approach is also used to evaluate the prompt fission neutron multiplicity and spectra for the neutron-induced fission of 235U with an improved version of the Los Alamos ...  相似文献   

17.
The emission spectra of prompt fission neutrons from mass and kinetic energy selected fission fragments have been measured in235U(n th,f). Neutron energies were determined from the measurement of the neutron time of flight using a NE213 scintillation detector. The fragment energies were measured by a pair of surface barrier detectors in one set of measurements and by a back-to-back gridded ionization chamber in the second set of measurements. The data were analysed event by event to deduce neutron energy in the rest frame of the emitting fragment for the determination of neutron emission spectra and multiplicities as a function of the fragment mass and total kinetic energy. The results are compared with statistical model calculations using shell and excitation energy dependent level density formulations to deduce the level density parameters of the neutron rich fragment nuclei over a large range of fragment masses.  相似文献   

18.
中子诱发233,235,238U裂变机制的多通道理论研究   总被引:1,自引:0,他引:1  
用改进的多通道和无规颈断裂模型,计算了能量En=0—6MeV的中子诱发233U、235U裂变和En=1.3—5.3MeV中子诱发238U裂变的碎片的质量分布、动能分布和瞬发中子数分布,理论计算在定量上与实验符合较好.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号