首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 171 毫秒
1.
The field emission properties of electrophoretic deposition(EPD) carbon nanotubes (CNTs) film have been improved by depositing CNTs onto the titanium (Ti)-coated Si substrate, followed by vacuum annealing at 900 °C for 2 h, and the enhanced emission mechanism has been studied using X-ray diffraction (XRD), scanning electron microscope (SEM) and Raman spectroscopy. Field emission measurements showed that the threshold electric field was decreased and the emission current stability was improved compared to that of EPD CNTs film on bare Si substrate. XRD and Raman spectroscopy investigations revealed that vacuum annealing treatment not only decreased the structural defects of CNTs but made a titanium carbide interfacial layer formed between CNTs and substrate. The field emission enhancement could be attributed to the improved graphitization of CNTs and the improved contact properties between CNTs and substrate including electrical conductivity and adhesive strength due to the formed conductive titanium carbide.  相似文献   

2.
Carbon nanotubes (CNTs) were modified by depositing a thin layer of titanium film on the surface using magnetron sputtering method, followed by vacuum annealing at 900 °C for 2 h. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) confirmed that the as-deposited thin titanium film reacted with carbon atoms to form titanium carbide after annealing. The experiment results show that the thickness of sputter-deposited titanium film has significant effect on the field emission J-E characteristic of modified CNTs film. The titanium carbide-modified CNTs film obtained by controlling the titanium sputtering time to 2 min showed an improved field emission characteristics with a significant reduction in the turn-on electric field and an obvious increase in the emission current density as well as an improvement in emission stability. The improvement of field emission characteristics achieved is attributed to the low work function and good resistance to ion bombardment of titanium carbide.  相似文献   

3.
以界面势垒对碳纳米管(CNT)场发射的影响为研究目的,在硅衬底上引进很薄的二氧化硅层,以二氧化硅层作为绝缘势垒,然后在二氧化硅界面层上直接生长CNT,来研究二氧化硅绝缘势垒层对CNT场发射的影响。场发射结果为:Fowler-Nordheim(F-N)曲线分为两部分,高电场下偏离F-N曲线并趋于饱和。在双势垒模型的基础上,从电场在两势垒上的分布不同及电子在两势垒上的隧穿几率不同,理论上分析了界面势垒对场发射的影响:低电场下电子在界面势垒的隧穿几率大于在表面势垒的隧穿几率,界面势垒对场发射不起阻碍作用,场发射遵守F-N规律;高电场下电子在界面势垒的隧穿几率小于在表面势垒的隧穿几率,场发射偏离F-N规律。理论对实验结果进行了合理的解释。  相似文献   

4.
Analytical expressions for the transmission coefficient and the resonance condition in unsymmetrical rectangular double-barrier structures are derived theoretically by taking into account the mass difference between well and barrier layers. It is found that resonant tunneling with a transmission peak equal to 1 (unity resonance) and resonant tunneling with a transmission peak less than 1 (below unity resonance) may occur in the unsymmetrical double-barrier structures. Two independent conditions are required for unity-resonant transmission: One is the Phase-Difference Condition for Resonance (PDCR) and the other is the Maximum Condition for the Peak Value (MCPV). The below-unity resonant transmission occurs when only condition PDCR holds. It is believed that the two conditions are useful for calculating values of the transmission coefficient and the resonance energy for the unsymmetrical double-barrier structures. They may be useful for resonant tunneling-device fabrication. Furthermore, wave functions of an electron at resonance level are calculated and the confining phenomenon is confirmed.  相似文献   

5.
In this report, we demonstrate scanning tunneling microscopy and spectroscopy on thin films of lauryl amine (LAM) and octadecane thiol (ODT) protected gold nanoparticles. We show that the zero current in the I-V curves (measure of Coulomb blockade (CB) of the nanoparticles) depends on the properties of the spacer molecule. In both the cases the gap voltage and the tunneling current at which the images are obtained are quite different which is further confirmed from the fitting performed based on the orthodox theory. The values for the capacitance and charging energy obtained from the fitting for ODT capped particles are comparable to the values obtained using spherical capacitor model. In contrast, values of these parameters were found to differ for LAM capped nanoparticles. While imaging, ODT capped nanoparticles were observed to drag along the scan direction leading to ordering of particles. Images of LAM capped gold nanoparticles show local ordering in self-assembly of particles although no evidence of large scale ordering in spatial Fourier transform was seen. These observations suggest that nanoparticles with larger CB would be imaged nonevasively in contrast to small CB systems for which tip induced effects will be dominant. In both the systems the current was found to rise faster than theoretical curves based on the orthodox theory suggesting that mechanism of charge transfer in this case may involve field emission rather than tunneling through a rectangular barrier. An attempt has been made to explain charge transfer based on Fowler-Nordheim (F-N) plots of the I-V curves.  相似文献   

6.
The field emission(FE) characteristics of nano-structured carbon films(NSCFs) are investigated.The saturation behaviour of the field emission current density found at high electric field E cannot be reasonably explained by the traditional Fowler-Nordheim(F-N) theory.A three-region E model and the curve-fitting method are utilized for discussing the FE characteristics of NSCFs.In the low,high,and middle E regions,the FE mechanism is reasonably explained by a modified F-N model,a corrected space-charge-limited-current(SCLC) model and the joint model of F-N and SCLC mechanism,respectively.Moreover,the measured FE data accord well with the results from our corrected theoretical model.  相似文献   

7.
A statistical data analysis methodology was developed to evaluate the field emission properties of many samples of copper oxide nanostructured field emitters. This analysis was largely done in terms of Seppen-Katamuki (SK) charts, field strength and emission current. Some physical and mathematical models were derived to describe the effect of small electric field perturbations in the Fowler-Nordheim (F-N) equation, and then to explain the trend of the data represented in the SK charts. The field enhancement factor and the emission area parameters showed to be very sensitive to variations in the electric field for most of the samples. We have found that the anode-cathode distance is critical in the field emission characterization of samples having a non-rigid nanostructure.  相似文献   

8.
王艳燕  李英爱  许基松  顾广瑞 《中国物理 B》2012,21(8):87902-087902
The field emission (FE) characteristics of nano-structrued carbon films (NSCFs) are investigated. The saturation behaviour of the field emission current density found at high electric field E cannot be reasonably explained by the traditional Fowler-Nordheim (F-N) theory. A three-region E model and the curve-fitting method are utilized for discussing the FE characteristics of NSCFs. In the low, high, and middle E regions, the FE mechanism is reasonably explained by a modified F-N model, a corrected space-charge-limited-current (SCLC) model and the joint model of F-N and SCLC mechanism, respectively. Moreover, the measured FE data accord well with the results from our corrected theoretical model.  相似文献   

9.
The contact potential between a single ZnO nanowire and Ti/Au contacts was estimated to be ∼30 meV by considering the Arrhenious plot of the two-probe resistance, the thermionic emission conduction, and the Fowler–Nordheim tunneling model. The net voltages applied to the contacts were calculated by subtracting the four-probe voltages from the two-probe voltages at the same currents. The activation energy of the four-probe resistance was about 2.4 mV which was 1/11th of that of the two-probe resistance. The Fowler–Nordheim plot clearly showed the crossover of the conduction mechanism from thermionic emission to tunneling regime as lowering the temperatures below T<100 K.  相似文献   

10.
考虑到薄膜中的电子散射,发展与完善了现有的场发射F-N(Fowler-Nordheim)模型,理论研究了不同厚度的半导体薄膜对其场发射性能的影响。结果表明:薄膜厚度对场发射性能的影响是非常显著的,随着薄膜厚度的增加,将相继出现极差膜厚值与最佳膜厚值,理论计算很好地验证了已有的实验结果;并进一步理论分析了半导体薄膜场发射性能随膜厚变化行为的物理实质,其可能来源于有效隧穿势垒面积的改变及电流密度在薄膜中的散射衰减。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号