首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 62 毫秒
1.
In this work zinc substituted cobalt ferrite nanoparticles (Co0.5Zn0.5Fe2O4) have been synthesized by the coprecipitation method, using stable ferric, zinc and cobalt salts with sodium hydroxide, at different solution temperatures, from room temperature to 363 K. The cobalt-zinc ferrite crystalline phase, the particle size and the morphology of the resulting nanoparticles were studied by X-ray diffraction and transmission electron microscopy. The average crystallite size of each sample was calculated from the broadening of the most intense peak (3 1 1), using Scherrer's formula and the results show crystallite sizes increased from 6 to 8 nm by increasing the solution temperature from room temperature to 363 K respectively. Room temperature VSM measurements show that the prepared nanoparticles have superparamagnetic behavior and did not saturate at maximum field of 800 kA/m. The variation of AC-susceptibility of the samples with respect to temperature was measured and it was found that the blocking temperature increased from 198 to 270 K by increasing the solution temperature from room temperature to 363 K respectively. FTIR spectra of the samples have been analyzed in the frequency range 400-4000 cm−1, which also confirms the results of XRD.  相似文献   

2.
We present Monte Carlo simulations of hysteresis loops of a model of a magnetic nanoparticle with a ferromagnetic core and an antiferromagnetic shell with varying values of the core/shell interface exchange coupling which aim to clarify the microscopic origin of exchange bias observed experimentally. We have found loop shifts in the field direction as well as displacements along the magnetization axis that increase in magnitude when increasing the interfacial exchange coupling. Overlap functions computed from the spin configurations along the loops have been obtained to explain the origin and magnitude of these features microscopically.  相似文献   

3.
Nickel ferrite nanoparticles have been prepared through a gentle chemistry route, starting from iron nitrate, nickel nitrate and stearic acid. The nickel ferrite crystalline phase, the particle size and shape, and the homogeneity of the resulting nanoparticles were studied by X-ray diffraction and transmission electron microscopy. Fourier transform infrared techniques were used to study the composition characteristics of the as-prepared sample. Magnetization studies at room temperature showed superparamagnetic behavior for the nanoparticles. Magneto-optic rotation studies at different wavelengths of He-Ne lasers reveal non-linear behavior.  相似文献   

4.
Nanosize zinc ferrite particles have been prepared for the first time using electrodeposition. Zinc and iron are deposited on the cathode from a common bath containing the salts of zinc and iron. The deposited materials were forced to undergo electrochemical oxidation in a strong alkaline solution (1 M KOH) to convert them into oxides. Crystallization in ZnFe2O4 structure was obtained by heating the deposited material at appropriate temperature. X-ray diffraction pattern confirmed that the procedure leads to the formation of pure phase of ZnFe2O4. The magnetization value for the smallest size ZnFe2O4 is much smaller than that for the ZnFe2O4 made by most of the other methods although it shows a nice hysteresis shape. The magnetization shows very little variation with size in the range studied.  相似文献   

5.
The magnetic properties of isotropic epoxy resin-bonded magnets prepared by mixing a hard magnetic powder made from melt quenched Nd–Fe–Co–B ribbons and a soft magnetic iron powder have been examined. The magnetization reversal processes and the magnetic parameters have been studied by the measurement of the virgin magnetization curves, the major and minor hysteresis loops and sets of recoil curves. From these recoil curves the field dependence of the reversible and irreversible magnetization components during the magnetization and demagnetization processes has been derived. The remanence relationship was used to study the nature of magnetic interaction between the grains. A study of interaction domains was conducted using optical microscopy. Groups of domains, each over several grains, were observed. It was found that the reversal process in the samples investigated involves the rotation of magnetization vectors in the iron powder grains and pinning of domain walls at the MQP-B grain boundaries.  相似文献   

6.
Two types of core-shell nanoparticles have been prepared by laser pyrolysis using Fe(CO)5 and C2H2 or [(CH3)3Si]2O as precursors and C2H4 as sensitizer. The first type (about 4 nm diameter) - produced by the decomposition of Fe(CO)5 in the presence of C2H4 and C2H2 - consists of Fe cores protected by graphenic layers. The second type (mean particle size of about 14 nm) consists also of Fe cores, yet covered by few nm thick γ-Fe2O3/porous polycarbosiloxane shells resulted from the [(CH3)3Si]2O decomposition and superficial oxidation after air exposure. The hysteresis loops suggest a room temperature superparamagnetic behavior of the Fe-C nanopowder and a weak ferromagnetic one for larger particles in the Fe-Fe2O3-polymer sample. Both types of nanoparticles were finally used as a catalyst for the carbon nanotube growth by seeding Si(100) substrates via drop-casting method. CNTs were grown by Hot-Filament Direct.Current PE CVD technique from C2H2 and H2 at 980 K. It is suggested that the increased density and orientation degree observed for the multiwall nanotubes grown from Fe-Fe2O3-polymer nanoparticles could be due to their magnetic behavior and surface composition.  相似文献   

7.
Iron oxide nanoparticles of diameter 14 nm were synthesized by applying Pt seed-assisted heterogeneous thermal decomposition of Fe(CO)5 in a two-stage procedure. The intense heating treatment resulted in a remarkable mean volume increment compared to previous studies. This method is able to control the nanoparticle mean diameter, keeping the demand for thermal energy at low levels. High-resolution electron microscopy images and the corresponding electron diffraction patterns revealed the appearance of a FePt3 core in each nanoparticle, surrounded by highly crystallized inverse spinel Fe3O4 formed after atmospheric oxidation, as shown by a combination of X-ray diffraction and chemical analysis. Magnetic measurements indicated that the presence of Pt-rich core does not cause any visible modification to the values of saturation magnetization and anisotropy constant of nanoparticles, compared to homogeneously nucleated iron oxide particles of the same size.  相似文献   

8.
Spinel ferrite NiFe2O4 nanoparticles (?25 nm) in SiO2 matrix were prepared by sol–gel method. The phase and average crystallite size of the samples were determined by X-ray diffraction method and the particle size distributions were studied by a transmission electron microscope. Magnetic properties of the samples were investigated with different ferrite particle sizes and at various temperatures down to 10 K. Superparamagnetic properties were observed at room temperature when the particle size is less than 10 nm.In superparamagnetic state, the field dependence of magnetization follows Langevin function which was originally developed for paramagnetism. The effective anisotropy constant Keff is found to increase significantly with the decrease in particle volume and an order of magnitude higher than that of the bulk samples when the particle size is below 5 nm due to the dominance of surface anisotropy. In case of nanosized systems, the effect of size reduction on the law of approach to saturation has also been studied in detail.  相似文献   

9.
Time dependence of the hysteresis loop asymmetry observed in partially crystallized Co66Si16B12Fe4Mo2Co66Si16B12Fe4Mo2 is here analyzed at room temperature. The results are related to a magnetic aftereffect occurring in the hard crystallites embedded in the residual soft matrix. The coercive field is found to be constant with time, which is explained in terms of the dipolar interaction theory.  相似文献   

10.
SnO2 was added to high-permeability MnZn ferrites and MnZn ferrites for high-frequency power supplies. The effects of the SnO2 addition were studied. Sn4+ ions can dissolve into the spinel lattice and form stable Fe2+–Sn4+ pairs and hence can compensate the magneto-crystalline anisotropy constant K1 and improve the initial permeability effectively. The initial permeability of ferrites is also improved as abnormal grain growth caused by ion vacancy is controlled with SnO2 doping. In addition, the SnO2 doping also leads to a decrease in the relative loss factor and an increase in density. The power loss and minimum power loss temperature decrease with SnO2 doping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号