首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 164 毫秒
1.
基于压电陶瓷精密微位移系统的扫描探测技术是目前精密测量仪器进行微纳区域/结构性能测试的核心系统,但压电陶瓷材料存在迟滞、非线性问题,限制了对微位移分辨能力的提升.本文以金刚石氮空位色心为敏感单元,利用电子自旋效应对磁场强度的高分辨敏感机理,结合永磁体周围不同位置对应的磁场强度变化关系,提出了一种基于金刚石氮空位色心电子自旋敏感机理的微位移检测方法.通过建立电子自旋效应与微位移的关联模型,搭建了相应的微位移测量系统.经实验验证,该系统对微位移测试的灵敏度为16.67 V/mm,检测分辨率达到60 nm,实现了对微位移的高分辨率测量.并通过理论分析,该系统的微位移测量分辨率可进一步提升至亚纳米级水平,为新型微位移测量技术提供了发展方向和研究思路.  相似文献   

2.
We report the detection of the square root of N statistical polarization in a small ensemble of electron spin centers in SiO2 by magnetic resonance force microscopy. A novel detection technique was employed that captures the statistical polarization and cycles it between states that are either locked or antilocked to the effective field in the rotating frame. Using field gradients as high as 5 G/nm, we achieved a detection sensitivity equivalent to roughly two electron spins, and observed ultralong spin-lock lifetimes, as long as 20 s. Given a sufficient signal-to-noise ratio, this scheme should be extendable to single electron spin detection.  相似文献   

3.
A simple method to change and keep track of neutron beam polarization non-parallel to the magnetic field is described. It makes possible the establishment of a new focusing effect we call neutron spin echo. The technique developed and tested experimentally can be applied in several novel ways, e. g. for neutron spin flipper of superior characteristics, for a very high resolution spectrometer for direct determination of the Fourier transform of the scattering function, for generalised polarization analysis and for the measurement of neutron particle properties with significantly improved precision.  相似文献   

4.
王成杰  石发展  王鹏飞  段昌奎  杜江峰 《物理学报》2018,67(13):130701-130701
纳米级分辨率的磁场测量和成像是磁学中的一种重要研究手段.金刚石中的单个氮-空位点缺陷电子自旋作为一种量子传感器,具有灵敏度高、原子级别尺寸、可工作在室温等诸多优势,灵敏度可以达到单核自旋级别,空间分辨率达到亚纳米.将这种磁测量技术与扫描成像技术结合,能够实现高灵敏度和高分辨率的磁场成像,定量地重构出杂散场.这种新型的磁成像技术可以给出磁学中多种重要的研究对象如磁畴壁、反铁磁序、磁性斯格明子的结构信息.随着技术的发展,基于氮-空位点缺陷的磁成像技术有望成为磁性材料研究的重要手段.  相似文献   

5.
6.
在考虑电子自旋和声子之间相互作用的同时,采用线性组合算符和微扰法研究半无限T1Br晶体内表面磁极化子处于基态时的振动频率和诱生势与磁场B和距晶体表面距离(坐标)z之间的依赖关系。  相似文献   

7.
Magnetic soft X-ray microscopy images magnetism in nanoscale systems with a spatial resolution down to 15 nm provided by state-of-the-art Fresnel zone plate optics. X-ray magnetic circular dichroism (X-MCD) is used as the element-specific magnetic contrast mechanism similar to photoemission electron microscopy (PEEM), however, with volume sensitivity and the ability to record the images in varying applied magnetic fields which allows study of magnetization reversal processes at fundamental length scales. Utilizing a stroboscopic pump-probe scheme one can investigate fast spin dynamics with a time resolution down to 70 ps which gives access to precessional and relaxation phenomena as well as spin torque driven domain wall dynamics in nanoscale systems. Current developments in zone plate optics aim for a spatial resolution towards 10 nm and at next generation X-ray sources a time resolution in the fs regime can be envisioned.  相似文献   

8.
We propose and demonstrate a technique for electrical detection of polarized spins in semiconductors in zero applied magnetic fields. Spin polarization is generated by optical injection using circularly polarized light which is modulated rapidly using an electro-optic cell. The modulated spin polarization generates a weak time-varying magnetic field which is detected by a sensitive radio-frequency coil. Using a calibrated pickup coil and amplification electronics, clear signals were obtained for bulk GaAs and Ge samples from which an optical spin orientation efficiency of 4.8% could be determined for Ge at 1342 nm excitation wavelength. In the presence of a small external magnetic field, the signal decayed according to the Hanle effect, from which a spin lifetime of 4.6±1.0 ns for electrons in bulk Ge at 127 K was extracted.  相似文献   

9.
Full-field soft X-ray microscopy in combination with X-ray magnetic circular dichroism as contrast mechanism is a powerful technique to image with elemental specificity magnetic nanostructures and multilayered thin films at high lateral resolution down to 15nm by using Fresnel zone plates as X-ray optical elements. Magnetization reversal phenomena on a microscopic level are studied by recording the images in varying external magnetic fields. Local spin dynamics at a time resolution below 100ps can be addressed by engaging a stroboscopic pump-and-probe scheme taking into account the time pattern of synchrotron storage rings. Characteristic features of magnetic soft X-ray microscopy are reviewed and an outlook into future perspectives with regard to increased lateral and temporal resolution is given.  相似文献   

10.
A SPLEEM (spin polarized low energy electron microscope) has been designed with a numerical simulation of electrostatic and magnetic field distributions and electron ray trajectories. Highly (more than 90%) spin polarized electron source has been used. A Wien type spin manipulator and a magnetic lens type spin rotator are used to align spin direction. A magnetic field free objective lens is designed to observe magnetic domain structure of magnetic materials. High or low magnification mode can be selected by using a combined electrostatic and magnetic objective lens for a high spatial resolution and a wide imaging area observation. An electrostatic mirror aberration corrector is installed after the image forming objective lens. A double deflection 45° beam separator is used to bend the direction of electrons from the source to the objective lens and from the objective lens to the mirror aberration corrector.  相似文献   

11.
A novel field-cycling unit with fast digital positioning of a high-resolution nuclear magnetic resonance probe in a spatially varying magnetic field is described and used to measure CIDNP spectra of the amino acid-dye (histidine-bipyridyl) photoreaction system in the range between 0 and 7 T. The pattern of nuclear polarization varies with the magnetic field. In particular, strong polarization with an emission/absorption pattern (multiplet effect) is found at low field for two histidine ringprotons with scalar coupling below 3 Hz visible only because of the high resolution made possible by the new field-cycling setup. Also for the CH2 protons in the β-position a multiplet effect is observed having a pattern changing with magnetic field. By analysis of the spin nutation the non-Boltzmann population differences of the nuclear levels have been determined.  相似文献   

12.
It is well known that upon passage through a spatially alternating transverse magnetic field, produced by a meander-shaped conducting foil, in its rest frame each neutron creates its individual frequency which depends on its velocity and the period of the meander. A resonant spin flip process takes place, if this frequency equals the Larmor frequency determined by a homogeneous vertical field. Clearly, this effect can be used to monochromatise a polarised neutron beam. Here we propose a novel design of such a magnetic resonator consisting of a sequence of separate compact modules, which provide high homogeneity of the transversal field oscillations and allow rapid beam chopping since they meet the specifications of fast electronic switching. The wavelength resolution of this resonator device can be changed in an instant and likewise an arbitrary amplitude modulation of the transversal field can be established, which is required for an efficient suppression of subsidiary maxima of the wavelength-dependent spin flip probability.  相似文献   

13.
We introduce a background-free real-time detection scheme capable of recognizing low-index nanoparticles such as single viruses in water. The method is based on interferometrically measuring the electromagnetic field amplitude of the scattered light. A split detector is used to generate a background-free signal that renders unprecedented sensitivity for small particles. In its current configuration the sensor is capable of detecting low-index particles in water down to 10 nm in radius or single gold particles as small as 5 nm. We demonstrate the detection of such small particles in a microfluidic system with a time resolution of 1 ms and we discuss the theoretical limits of this novel detection scheme.  相似文献   

14.
Conductance measurements of tunnel junctions formed between a superconductor (thin A1) and a ferromagnetic metal (Ni) in a magnetic field are used to resolve the tunneling conductance into conductances for each of the electron spin directions. This resolution can be used to obtain the spin densities of states of high field superconductors for which spin scattering processes are important.  相似文献   

15.
A model is presented for the magnetic excitations and magnon-phonon coupling in a localised moment ferromagnet in which spins can reorientate by application of a magnetic field. The model is suitable for those materials which possess a spin wave gap at zero wave vector and therefore the magnon and acoustic phonon branches can intersect. A magnon-phonon coupling linear in both spin and phonon operators is employed which has proved successful for the ferrous salts. The main effect of the applied field is to modify the spin wave gap, and to introduce a critical value for the coupling constant which enables the system to remain stable as the gap goes to zero. Furthermore the wave vector of the anticrossing point decreases as the spin wave gap increases and therefore the value of the sound velocity determined by high resolution inelastic neutron experiments is dependent on the gap.  相似文献   

16.
Water transport and water management are fundamental to polymer electrolyte membrane fuel cell operation. Accurate measurements of water content within and across the Nafion layer are required to elucidate water transport behavior and validate existing numerical models.We report here a direct measurement of water content profiles across a Nafion layer under wetting and drying conditions, using a novel magnetic resonance imaging methodology developed for this purpose. This method, multi-echo double half k-space spin echo single point imaging, based on a pure phase encode spin echo, is designed for high resolution 1D depth imaging of thin film samples. The method generates high resolution (<8 μm) depth images with an SNR greater than 20, in an image acquisition time of less than 2 min. The high temporal resolution permits water content measurements in the transient states of wetting and drying, in addition to the steady state.  相似文献   

17.
A new experiment is constructed aiming at the first direct high‐precision measurement of the helium‐3 nuclear magnetic moment with a relative precision of parts‐per‐billion or better. Methods similar to those used in proton and antiproton magnetic moment measurements are applied. As those techniques rely on the challenging detection of single spin‐flips, a novel Penning trap design optimized for nuclear spin‐flip detection is developed.  相似文献   

18.
The Zeeman splitting of a localized single spin can be used to construct a highly sensitive magnetometer offering almost atomic spatial resolution. While sub-μT sensitivity can be obtained in principle using pulsed techniques and long measurement times, a fast and easy method without laborious data postprocessing is desirable for a scanning-probe approach with high spatial resolution. In order to measure the resonance frequency in real time, we applied a field-frequency lock to the optically detected magnetic resonance signal of a single electron spin in a nanodiamond. We achieved a sampling rate of up to 100 readings per sec with a sensitivity of 6 μT/sqrt[Hz]. Images of the field distribution around a magnetic wire were acquired with ~30 μT resolution and 4096 submicron sized pixels in 10 min. The response of several spins was used to reconstruct the field orientation.  相似文献   

19.
A nuclear spin maser of a new type, that employs a feedback scheme based on optical nuclear spin detection, has been fabricated. The spin maser is operated at a low static field of 30 mG by using the optical detection method. The frequency stability and precision of the spin maser have been improved by a highly stabilized current source for the static magnetic field. An experimental setup to search for an electric dipole moment (EDM) in 129Xe atom is being developed.  相似文献   

20.
Antiferromagnets are promising for future spintronic applications owing to their advantageous properties: They are magnetically ordered, but neighboring magnetic moments point in opposite directions, which results in zero net magnetization. This means antiferromagnets produce no stray fields and are insensitive to external magnetic field perturbations. Furthermore, they show intrinsic high frequency dynamics, exhibit considerable spin–orbit and magneto-transport effects. Over the past decade, it has been realized that antiferromagnets have more to offer than just being utilized as passive components in exchange bias applications. This development resulted in a paradigm shift, which opens the pathway to novel concepts using antiferromagnets for spin-based technologies and applications. This article gives a broad perspective on antiferromagnetic spintronics. In particular, the manipulation and detection of antiferromagnetic states by spintronics effects, as well as spin transport and dynamics in antiferromagnetic materials will be discussed. We will also outline current challenges and future research directions in this emerging field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号