首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
翼型绕流电磁控制的实验和数值研究   总被引:1,自引:0,他引:1       下载免费PDF全文
分布在弱电介质溶液中的电磁力(Lorentz力),可以有效地控制边界层的流动.利用以转动水槽为主的实验系统和基于双时间步Roe格式的数值方法,对翼型绕流的电磁控制进行了实验和数值研究.结果表明,对于一定攻角的翼型,电磁力可以控制其绕流形态.当电磁力方向与流动方向相同时,可以抑制分离,消除涡街,其效果与减小攻角类似.当电磁力的方向与流动方向相反时,可在流场中形成大涡组成的涡街,增强流体的混合能力,其效果与增大攻角类似.  相似文献   

2.
翼型绕流电磁控制的实验和数值研究   总被引:1,自引:0,他引:1       下载免费PDF全文
分布在弱电介质溶液中的电磁力(Lorentz力),可以有效地控制边界层的流动.利用以转动水槽为主的实验系统和基于双时间步Roe格式的数值方法,对翼型绕流的电磁控制进行了实验和数值研究.结果表明,对于一定攻角的翼型,电磁力可以控制其绕流形态.当电磁力方向与流动方向相同时,可以抑制分离,消除涡街,其效果与减小攻角类似.当电磁力的方向与流动方向相反时,可在流场中形成大涡组成的涡街,增强流体的混合能力,其效果与增大攻角类似. 关键词: 电磁力 翼型绕流 流体控制  相似文献   

3.
In this paper both numerical and experimental investigations have been carried out to suppress the vortex-induced vibration (VIV) of a circular cylinder in an electrically low-conducting fluid. The electromagnetic forces (Lorentz forces) in the azimuthal direction were generated through the mounted electrodes and magnets locally on the surface of the cylinder, which have been proved having an accelerating effect to the fluid on the surface of the cylinder. Results of computations are presented for synchronous vibration phenomenon of a cylinder at Re=200, which are in good agreement with previous computational results. With the Lorentz forces loaded, the VIV of the cylinder has been suppressed successfully. Experimental results have also shown the same tendency and are in reasonable agreement with the numerical results.  相似文献   

4.
刘宗凯  薄煜明  王军  崔珂 《物理学报》2017,66(8):84704-084704
搭载在潜航器上的光电桅杆是光电跟瞄的重要装置.当潜航器在水下高速行进时,海水会在物体表面形成脱体边界层和涡街,涡街的生成和脱体会引起阻力和升力的大幅度波动,从而对光轴稳定性产生极大的扰动.本文首先基于电磁场和流体力学的基本控制方程,通过层次结构网格下的有限体积法探讨了电磁流体表面控制对潜航器绕流流场的影响和消涡减振效果;其次,分析并获得了快速反射镜(fast steering mirror,FSM)的结构特性、传递函数和PID控制策略;最后,以潜航器光路模型为研究背景,结合电磁流体的滤波特性和FSM的传递函数,论证了复合控制对潜载光电跟瞄系统稳定性提高的效果.结果表明,壁面流向电磁力能很好地调控潜航器绕流边界层,抑制涡激振动、减少光学系统的输入噪声,在此基础上通过FSM实现二次补偿,可以进一步提高光学系统跟踪的精度.本研究是电磁流体控制在光电领域的探索,也是对传统流体力学实验方法的拓展,因此具有一定的科学意义和实用价值.  相似文献   

5.
Molecular dynamics methods have been used in a quantitative study of the growth and decay of Taylor vortices in a fluid confined between concentric cylinders when the rotation of the inner cylinder is instantaneously started or stopped. Analysis of the temporal evolution of the vortex flow fields shows that the behavior of this microscopic system agrees with experiment. In order to make the analysis entirely self-contained, torque measurements have been used to determine the effective viscosity of the fluid.  相似文献   

6.
A narrow strip has been introduced as a control element to suppress vortex shedding from a cylinder. The strip is set parallel to the cylinder axis, and the key parameter of control in this study is the strip position, which is determined by the angle of attack of the strip and the distance between the strip and the cylinder axis. A circular cylinder and a square cylinder were tested respectively. Flow visualization and hot-wire measurement were performed in a low turbulence wind tunnel in the range of Reynolds numberRe=4.0×103≈2.0×104. Test results show that, vortex shedding from both sides of the cylinder can be effectively suppressed if the strip is located in a certain zone in the wake. The effective zones in circular cylinder wakes at different Reynolds numbers have been found out, and the mechanism of the suppression has been discussed.  相似文献   

7.
The initial responses and evolutions of the flow pattern and lift coefficient of a hydrofoil under the action of electro-magnetic (Lorentz) force have been studied experimentally and numerically, and trace particle methods are employed for them. With the introduction of BVF (boundary vortex flux), the quantitative relation among Lorentz forces, BVF and lifts is deduced. The influences of flow patterns on the hydrofoil lift coefficient have been discussed based on the BVF distribution, and the flow control mechanism of Lorentz force for a hydrofoil has been elucidated. Our results show that the flow pattern and lift of the hydrofoil vary periodically without any force. However, with the action of streamwise Lorentz forces, the separation point on the hydrofoil surface moves backward with a certain velocity, which makes the flow field steady finally. The streamwise Lorentz force raises the foil lift due to the increase of BVF intensity. On the other hand, Lorentz force also increases the hydrofoil surface pressure, which makes the lift decrease. However, the factor leading to the lift enhancement is determinant, therefore, the Lorentz force on the suction side can increase the lift, and the stronger the Lorentz force, the larger the lift enhancement. Our results also show that the localized Lorentz force can also both suppress the flow separation and increase the hydrofoil lift coefficient, furthermore, the Lorentz force located on the tail acts better than that located on the front.  相似文献   

8.
Turbulent control and drag reduction in a channel flow via a bidirectional traveling wave induced by spanwise oscillating Lorentz force have been investigated in the paper. The results based on the direct numerical simulation (DNS) indicate that the bidirectional wavy Lorentz force with appropriate control parameters can result in a regular decline of near-wall streaks and vortex structures with respect to the flow direction, leading to the effective suppression of turbulence generation and significant reduction in skin-friction drag. In addition, experiments are carried out in a water tunnel via electro-magnetic (EM) actuators designed to produce the bidirectional traveling wave excitation as described in calculations. As a result, the actual substantial drag reduction is realized successfully in these experiments.  相似文献   

9.
We propose a comprehensive framework for quantum hydrodynamics of the fractional quantum Hall (FQH) states. We suggest that the electronic fluid in the FQH regime can be phenomenologically described by the quantized hydrodynamics of vortices in an incompressible rotating liquid. We demonstrate that such hydrodynamics captures all major features of FQH states, including the subtle effect of the Lorentz shear stress. We present a consistent quantization of the hydrodynamics of an incompressible fluid, providing a powerful framework to study the FQH effect and superfluids. We obtain the quantum hydrodynamics of the vortex flow by quantizing the Kirchhoff equations for vortex dynamics.  相似文献   

10.
A cylinder attached to an end-wall normal to its axis is a common feature of many practical flow systems, e.g. in turbo-machinery or when a bridge is supported by a pillar from the bed of a river. In this situation, the nominally two-dimensional boundary layer flow incident upon the cylinder develops strong three-dimensional features and a very pronounced vortex structure may arise in the upstream flow close to the wall. For the appropriate Reynolds number range, the upstream vortical structure is nominally steady and is commonly referred to as the “horseshoe vortex system”. In contrast, the flow downstream is unsteady and periodic over a wide range of Reynolds numbers and vortices aligned with the cylinder axis are shed at a regular frequency into the wake. The generation of both these vortex systems requires energy to be extracted from the incident flow with the result that the drag force on the cylinder is increased.This paper concentrates on the upstream region of the cylinder and discusses an investigation in which two-component Particle Image Velocimetry (PIV) has been used to visualise the flow behaviour for a circular cylinder on a plane end-wall. The use of PIV has enabled two orthogonal velocity components to be measured in planes defined by the upstream flow direction and the axis of the cylinder. The third (out-of-plane) velocity component was then calculated by integrating the continuity equation. Subsequently, the velocity field information has been manipulated and converted into time-averaged information.Discussion of the measured results confirms that colour displays are an invaluable aid to understanding this complex fluid flow situation since they reveal substantially more information than grey-scale plots of the same data. In particular, the source of the horseshoe vortex system can be identified when colour plots of the time-averaged velocity and vorticity distributions are obtained. A limited amount of information on the unsteady vortex structures appearing in the end-wall region upstream of the cylinder is also presented. Finally, the experimental findings are discussed in relation to the results of previous workers.  相似文献   

11.
Temporal chaotic character of vortex motion in systems where defects are arranged in periodic arrays has been investigated by computer simulation. Due to the high nonlinearity of the vortex–defect interaction, the temporal evolution of the vortex motion is chaotic with a power spectrum similar to what have been observed in the experiments. It is found that the strength of both the vortex–vortex and vortex–defect interactions have no significant effects on the chaotic motion of the vortices, however, the mismatch between these two interactions causes attractor crisis of the system. Different from them, the Lorentz force is not the origin of the attractor crisis, but it causes a divergent motion of the vortex (i.e., the flux flow).  相似文献   

12.
董国丹  张焕好  林震亚  秦建华  陈志华  郭则庆  沙莎 《物理学报》2018,67(20):204701-204701
本文基于磁流体动力学方程组,在保证磁场散度为零的条件下,采用CTU+CT(corner transport upwind+constrained transport)算法,对有无磁场控制下激波与重质或轻质三角形气柱相互作用过程进行数值研究.结果表明:无论有无磁场,两气柱在激波冲击下均具有完全不同的波系结构和射流现象.其中,入射激波与重气柱发生常规折射,形成介质射流,而与轻气柱作用则发生非常规折射,形成反相空气射流.无磁场时,气柱在激波冲击下,产生Richtmyer-Meshkov和Kelvin-Helmholtz不稳定性,界面出现次级涡序列,重气柱上下角卷起形成主涡对,轻气柱空气射流穿过下游界面后形成偶极子涡.施加横向磁场后,次级涡序列、主涡对以及偶极子涡均消失.进一步研究表明,在磁场作用下,洛伦兹力将不稳定性诱导产生的涡量向界面两侧的Alfvén波上输运,减少界面涡量沉积,抑制界面卷起失稳.最终,涡量沿界面两侧形成相互远离的涡层,界面不稳定性得到控制.此外,定量分析表明磁场能加快两气柱上游界面的运动,抑制下游界面的运动,且对轻气柱的控制效果更好.  相似文献   

13.
Interactions between magnetic and vortex rings are studied over a wide interval of interaction parameter values ranging from negligible magnetic effects on vorticity structure, to very strong effects. The employed interaction parameter measures the strength of the Lorentz force in units of the inertial force. At small interaction parameters, the vortex ring shapes part of the magnetic ring into a dissipative, curved, magnetic sheet structure. At high interaction parameters, the Lorentz force acts as an agent of proliferation of vortex rings, since it generates two vortex rings adjacent to the original magnetic structure, one of which is pulled (together with the advected magnetic field) into the wake of the original vortex ring, while the other escapes, ready to interact with another magnetic ring. Once within the initial vortex ring wake, both magnetic and vorticity structures are stretched into spirals, whilst the Lorentz force continuously generates new, intense vorticity at high magnetic field sites.  相似文献   

14.
《Journal of Electrostatics》2007,65(10-11):631-638
The physics that initiate and sustain tornados and dust devils is still under investigation. Forces that operate throughout a wide range of scales and could contribute to atmospheric vortex phenomena are the Lorentz force and the force of electric fields. The Lorentz force results in a circular motion of charged particles in a magnetic field. An electric field will pull or repel a charged particle in the direction of the field. This paper will demonstrate that the Lorentz force and the force of electric fields, acting on charged particles that exist in atmospheric vortex phenomena, plausibly contribute to the set of physics that will explain tornados and other atmospheric vortex phenomena.  相似文献   

15.
绕圆柱体自由表面磁流体流动和传热的研究   总被引:1,自引:0,他引:1  
本文对在不同雷诺数下,绕圆柱体的磁流体自由表面流动及传热进行了模拟,分析了磁场对绕流圆柱尾迹和涡分离的影响,获得了两种雷诺数下的电磁力密度、流场和温度场分布。结果表明,磁场不仅影响了流动的形态,而且对湍流有抑制作用,降低了自由表面的更新机制,从而减少了传热能力;在相同的Hartmann数下,相比低雷诺数下的流动换热情况,高雷诺数下的湍流不能被完全抑制,自由表面与尾迹的相互作用也较强,因而自由表面换热也较强。  相似文献   

16.
We report new results on the ultrasonic characterization of a fluid flow using an acoustic time-reversal mirror (TRM). The structure of a large vortex generated by a rotating disk in a hollow cylinder is investigated both inside and below the cylinder. For mean-flow characterization, the TRM is shown to be a powerful vorticity detector. Experimental time-of-flight data are successfully compared to a numerical simulation of the flow and the orthoradial velocity is reconstructed using simple geometrical acoustics. Real-time measurements allow us to extract the precession motion of the vortex, providing direct, non-intrusive, and dynamical information on the flow. Received 23 April 1998  相似文献   

17.
等离子体柱中的短波漂移旋涡   总被引:1,自引:1,他引:0  
本文研宄等离子体柱中短波漂移非线性波。我们推导出柱坐标系中描述该波的非线性耦合方程组,求出一类不同于在笛卡尔坐标系中得到的偶极旋涡(vortex)的新解。这类新解由轴对称和反对称两部分组成,称之为径向旋涡。  相似文献   

18.
A flexibly mounted circular cylinder in cross-flow, with natural frequencies in the inline and transverse directions having a ratio close to 2:1, exhibits drastic changes in the vortex structures in its wake, the frequency content of the fluid forces, and the orbital shape of its resulting motions. Stable multivortex patterns form in the cylinder wake, associated with large high-frequency force components.  相似文献   

19.
Using Lorentz microscopy to directly image vortices, we investigate vortex motion control and rectification in a niobium superconductor. We directly observe a net motion of vortices along microfabricated channels with a spatially asymmetric potential, even though the vortices were driven by an oscillatory field. By observing the individual motion of vortices, we clarify elementary processes involved in this rectification. To further demonstrate the ability to control the motion of vortices, we created a tiny vortex "racetrack" to monitor the motion of vortices in a closed circuit channel.  相似文献   

20.
In this paper, the electro-magnetic control of a cylinder wake in shear flow is investigated numerically. The effects of the shear rate and Lorentz force on the cylinder wake, the distribution of hydrodynamic force, and the drag/lift phase diagram are discussed in detail. It is revealed that Lorentz force can be classified into the field Lorentz force and the wall Lorentz force and they affect the drag and lift forces independently. The drag/lift phase diagram with a shape of "8" consists of two closed curves, which correspond to the halves of the shedding cycle dominated by the upper and lower vortices respectively. The free stream shear (K 〉 0) induces the diagram to move downward and leftward, so that the average lift force directs toward the downside. With the upper Lorentz force, the diagram moves downwards and to the right by the field Lorentz force, thus resulting in the drag increase and the lift reduction, whereas it moves upward and to the left by the wall Lorentz force, leading to the drag reduction and the lift increase. Finally the diagram is dominated by the wall Lorentz force, thus moving upward and leftward. Therefore the upper Lorentz force, which enhances the lift force, can be used to overcome the lift loss due to the free stream shear, which is also obtained in the experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号