首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 823 毫秒
1.
A fully quantum mechanical approach to the calculation and normalization of the Franck–Condon factors for diatomic species is described. The treatment is based on the fundamental demand of completeness of the energy eigenfunctions, which results in the rigorous sum rule for the Franck–Condon overlap integrals. The importance of this general rule has been discussed and thoroughly illustrated in the case of diatomic xenon molecules. Exactly solvable reference potentials for this system have been constructed and a complete basis of the actual energy eigenstates (including both bound and scattering states) has been created. Several direct spectroscopic applications to xenon excimers are presented, and their good agreement with relevant experimental data demonstrated. In particular, a kinetic model is proposed to explain the observed oscillatory structures in the fluorescence spectra of Xe2* [Chem. Phys. Lett. 117 (1985) 301] related to their classical left turning points. The same model gives a uniform explanation to the well-known first and second emission continua of rare gases.  相似文献   

2.
Energy loss rates of two-dimensional electron gas in GaInAs/AlInAs, InSb/AlInSb and GaSb/AlGaAsSb heterostructures are theoretically investigated over a wide range of temperature based on the electron–one-phonon and electron–two-phonon interactions. Calculations are presented for electron acoustic one-phonon interaction via deformation potential and piezoelectric coupling and electron–LO phonon interaction with hot phonon effect. In addition, energy loss rate due to electron-two-zone edge transverse acoustic (TA) phonons is also presented. A very good agreement is obtained between the calculations and experimental data in GaInAs/AlInAs structure with the inclusion of electron–two-zone edge TA phonon interaction. In all these three structures energy loss is dominated by (i) acoustic one-phonon scattering at low temperatures, (ii) two-TA zone edge phonons at intermediate temperatures and (iii) LO phonons at high temperatures. It is observed that, hot phonon effect reduces the energy loss rate considerably in these structures.  相似文献   

3.
Theoretical calculations of electron–phonon scattering rates in AlGaN/GaN quantum dots (QDs) have been performed by means of effective mass approximation in the frame of finite element method. The influence of a symmetry breaking of the carrier's wave function on the electron dephasing time is investigated for various QDs shapes. In a QD system the electron energy increases when the QD shape changes from a spherical to a non-spherical form. In addition, the influence of the QD shape upon the electronic structure can be modulated by external magnetic fields. We also show that the electron–acoustic phonon scattering rates strongly depend upon both the QD shape and the applied magnetic field. As an additional parameter, the QD shape can be used to modify the electron–acoustic phonon interaction in a wide range. Moreover, the scattering rate of different transitions, such as Δm=0(1), presents distinct magnetic field dependency.  相似文献   

4.
For systems with strong electron correlations and strong electron–phonon interaction, we analyze the electron–phonon interaction in local variables. The effects of the mutual influence of electron–electron and electron–phonon interactions that determine the structure of local Hubbard polarons are described. Using a system containing copper–oxygen layers as an example, we consider the competition between the diagonal and off-diagonal interactions of electrons with the breathing mode as the polaron band structure is formed within a corrected formulation of the polaron version of the generalized tight-binding method. The band structure of Hubbard polarons is shown to depend strongly on the temperature due to the excitation of Franck–Condon resonances. For an undoped La2CuO4 compound we have described the evolution of the band structure and the spectral function from the hole dispersion in an antiferromagnetic insulator at low temperatures with the valence band maximum at point (π/2, π/2) to the spectrum with the maximum at point (π, π) typical for the paramagnetic phase. The polaron line width at the valence band top and its temperature dependence agree qualitatively with angle-resolved photoemission spectroscopy for undoped cuprates.  相似文献   

5.
We have studied the effect of electron–phonon interaction for small electron–phonon coupling on the electronic energy spectrum of an electron confined by a parabolic potential and a repulsive antidot potential in the presence of a uniform strong magnetic field and an Aharonov–Bohm flux field by using a variational procedure. We have shown that the presence of the antidot potential removes degeneracy of the Landau levels and electron–phonon interaction has nonnegligible effects on these levels.  相似文献   

6.
The vibrational structure of the absorption spectra of the first n*–electron transitions of the HNO and DNO molecules is calculated in the Franck–Condon approximation. A structural model of the molecules in the excited electronic state is constructed on the basis of correlations and with the aid of a method of hybrid atomic orbitals. Evaluation of the influence of deuterium substitution on the intensities of the vibrational components upon electronic excitation is made. A comparison of the experimental and theoretical absorption spectra calculated for different models of the molecules is carried out.  相似文献   

7.
Based on the global coherent tunneling model, we present a self-consistent calculation and show that structural asymmetry of double barrier resonant tunneling structures (DBRTSs) significantly modifies the current–voltage characteristics compared to the symmetric structures. Within the framework of the dielectric continuum model, we further investigate the phonon-assisted tunneling (PAT) current in symmetric and asymmetric DBRTSs. Both the interface modes and the confined bulk-like longitudinal-optical phonons are considered. The results indicate that the four higher-frequency interface phonon modes (especially the one which has the largest electron–phonon interaction at either interface of the emitter barrier) dominate the PAT processes. We show that a suitably designed asymmetric structure can produce much larger peak current and absolute value of the negative differential conductivity than its commonly used symmetric counterpart.  相似文献   

8.
Electron scattering from boundaries and impurities destroys the single-particle picture of the electron–phonon interaction. We show that quantum interference between ‘pure‘ electron–phonon and electron–boundary/impurity scattering may result in the reduction as well as to the significant enlargement of the electron dephasing rate. This effect crucially depends on the extent, to which electron scatterers, such as boundaries and impurities, are dragged by phonons. Static and vibrating scatterers are described by two dimensionless parametersqTl and qTL, where q is the wavevector of the thermal phonon, l is the total electron mean-free path, L is the mean-free path due to scattering from static scatterers. According to the Pippard ineffectiveness condition , without static scatterers the dephasing rate at low temperatures is slower by the factor 1 / ql than the rate in a pure bulk material. However, in the presence of static potential the dephasing rate turns out to be 1 / qL times faster. Thus, at low temperatures electron dephasing and energy relaxation may be controlled by electron boundary/impurity scattering in a wide range.  相似文献   

9.
The effect of the electron–phonon interaction on the second-order susceptibilities are investigated theoretically for electrons confined in half parabolic quantum wells. We found that the electron–phonon interaction in GaAs based wells increases the second-order susceptibilities with up to a factor of 10–40.  相似文献   

10.
The paper presents theoretical approach to simulation of nonlinear optical absorption in zinc selenide crystals doped with cobalt (II) ions (ZnSe:Co2+), which was reported by us earlier (Opt. Laser Technology, V. 35, (2003), 169). We used ZnSe:Co2+ crystals as saturable absorbers for generation of giant-pulse eye-safe laser radiation. It was found that minimal optical losses (maximal final transmission) occurred for ZnSe samples containing 1.6×1019 cm−3 of Co2+ ions. Band structure and photoinduced molecular dynamics simulations were performed to explain the parabolic dependence of optical losses versus Co2+ concentration. The minimum was shown to be the result of photoinduced anharmonic electron–phonon interaction.  相似文献   

11.
We study the electronic structure of tin-phthalocyanine (SnPc) molecules adsorbed on a Ag(1 1 1) surface by high-resolution photoelectron spectroscopy. We particularly address the effect of different SnPc coverages on the interaction and charge transfer at the interface. The results give evidence for a covalent molecule–substrate interaction, which is temperature and coverage dependent. The valence and core level spectra as well as the work function measurements allow us monitoring subtle differences in the strength of the interface interaction, thus demonstrating the sensitivity of the methods. The results consistently show the effect of charge exchange between substrate and molecules which obviously leads to a net charge transfer into the SnPc molecules, and which is increased with decreasing coverage. Surprisingly, the Sn3d core levels are neither effected by variations of charge transfer and interaction strength, nor by a possible “Sn-up” or “Sn-down” orientation, which have been observed for sub-monolayers.  相似文献   

12.
We report on a field-dependent photoluminescence (PL) emission rate for the transitions between band states in modulation-doped CdTe/Cd1−xMgxTe single quantum wells in the integer quantum Hall region. The recombination time observed for the magneto-PL spectra varies in concomitance with the integer quantum Hall plateaus. Furthermore, different PL decay times were observed for the two circular polarizations, i.e. for the transitions between the Zeeman split subbands of the Landau levels. We analyzed the data in comparison with the experimentally determined spin polarization of the conduction electrons and the Zeeman splitting of the valence band. Furthermore, we discuss the relevance of the spin polarization of the conduction electrons, the electron–hole exchange interaction and the spin-flip processes of the hole states for the PL decay time.  相似文献   

13.
Far-infrared reflectivity spectra of Pb1−xMnxTe (0.0001x0.1) single crystals were measured in the 10–250 cm−1 range at room temperature. The analysis of the far-infrared spectra was made by a fitting procedure based on the model of coupled oscillators. In spite of the strong plasmon–LO phonon interaction, we found that the long wavelength optical phonon modes of these mixed crystals showed an intermediate one–two mode behavior.  相似文献   

14.
We have studied the electronic structure and charge-carrier dynamics of individual single-wall carbon nanotubes (SWNTs) and nanotube ropes using optical and electron–spectroscopic techniques. The electronic structure of semiconducting SWNTs in the band-gap region is analyzed using near-infrared absorption spectroscopy. A semi-empirical expression for E11S transition energies, based on tight-binding calculations is found to give striking agreement with experimental data. Time-resolved PL from dispersed SWNT-micelles shows a decay with a time constant of about 15 ps. Using time-resolved photoemission we also find that the electron–phonon (e–ph) coupling in metallic tubes is characterized by a very small e–ph mass-enhancement of 0.0004. Ultrafast electron–electron scattering of photo-excited carriers in nanotube ropes is finally found to lead to internal thermalization of the electronic system within about 200 fs. PACS 78.47.+p; 81.07.De; 78.67.Ch; 87.64.Ni  相似文献   

15.
We study theoretically the time development of electronic relaxation in quantum dots. We consider the process of relaxation of the state with an electron prepared at the beginning of relaxation in the electronic ground state. We obtain a fast (in picoseconds) increase of electronic population in the excited state. Also, we consider the process of relaxation of an electron from an excited state in the dot. Here we obtain an incomplete depopulation of the electron from the excited state. We compare these results to experiments in which a fast decrease of luminescence is reported during the first period of relaxation after resonant excitation of the ground state. We estimate numerically the role of electron–LO–phonon (Fröhlich's coupling) mechanism in these processes. We show that this effect may be attributed to the influence of multiple scattering of quantum dot electrons on LO phonons. A single-electron two-energy-level quantum dot model is used to demonstrate this effect in an isolated semiconductor quantum dot.  相似文献   

16.
We have calculated spin-relaxation rates in parabolic quantum dots due to the phonon modulation of the spin–orbit interaction in the presence of an external magnetic field. Both deformation potential and piezoelectric electron–phonon coupling mechanisms are included within the Pavlov–Firsov spin–phonon Hamiltonian. Our results have demonstrated that, in narrow gap materials, the electron–phonon deformation potential and piezoelectric coupling give comparable contributions to spin-relaxation processes. For large dots, the deformation potential interaction becomes dominant. This behavior is not observed in wide or intermediate gap semiconductors, where the piezoelectric coupling, in general, governs the spin-relaxation processes. We have also demonstrated that spin-relaxation rates are particularly sensitive to the Landé g-factor.  相似文献   

17.
Cs/InN and Ba/InN interfaces were studied by UV photoelectron spectroscopy in the submonolayer coverage range for the first time. Normal photoemission spectra from the valence band and spectra from In 4d, Ba 5p, Ba 4d, and Cs 5p core levels were investigated in the excitation energy range of 60–800 eV. It was found that metallization of the interface and narrowing of the valence band is observed upon increasing coverage.  相似文献   

18.
Temperature evolution of the fine structure of the electronic spectra of uranyl nitrates and fluorides is considered. It is shown that for pure crystals at T = 4.2 K the contour is described by the Lorentz curve; for other cases a convolution of the type of the Voigt function is typical. Weak electron–phonon interaction leads to temperature broadening of spectra predominantly due to the Boltzmann change in the population of the initial electronic–vibrational states.  相似文献   

19.
A theoretical investigation of the electron and phonon time-dependent distributions in an Ag film subjected to a femtosecond laser pulse has been carried out. A system of two coupled time-dependent Boltzmann equations, describing electron and phonon dynamics, has been numerically solved. In the electron Boltzmann equation, electron–electron and electron–phonon collision integrals are considered together with a source term for laser perturbation. In the phonon Boltzmann equation, only electron–phonon collisions are considered, neglecting laser perturbation and phonon–phonon collisions. Screening of the interactions has been accounted for in both the electron–electron and the electron–phonon collisions. The results show the simultaneous electron and phonon time-dependent distributions from the initial non-equilibrium behaviour up to the establishment of a new final equilibrium condition. PACS 72.10.-d; 71.10.Ca; 63.20.Kr  相似文献   

20.
Using symmetric cationic indopolycarbocyanines HIC and HIDC as an example, the authors detected the enhancement of their photoluminescence in films of photoconductive polymers poly–N–epoxypropyl carbazole and poly–N–vinyl carbazole as compared to nonphotoconductive polymers, i.e., polyvinyl butyral, polystyrene, and polyethylene. The excitation was carried out on the shortwave edge of the absorption band of the dye and did not affect the absorption region of the polymer. It is shown that the effect of enhancement of the luminescence increases with decrease in the excitation wavelength and becomes weaker with increase in the molecular mass of carbazole–containing polymers. Its enhancement is interpreted as the recombination luminescence of electron–hole pairs formed in photogeneration of charge from the dye molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号