首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
郑荣杰  金晶  唐翌 《中国物理》2006,15(9):1960-1964
The ground-state properties of a system with a small number of interacting bosons over a wide range of densities are investigated. The system is confined in a two-dimensional isotropic harmonic trap, where the interaction between bosons is treated as a hard-core potential. By using variational Monte Carlo method, we diagonalize the one-body density matrix of the system to obtain the ground-state energy, condensate wavefunction and the condensate fraction. We find that in the dilute limit the depletion of central condensate in the 2D system is larger than in a 3D system for the same interaction strength; however as the density increases, the depletion at the centre of 2D trap will be equal to or even lower than that at the centre of 3D trap, which is in agreement with the anticipated in Thomas--Fermi approximation. In addition, in the 2D system the total condensate depletion is still larger than in a 3D system for the same scattering length.  相似文献   

2.
We review our recent experimental realization and investigation of a spin orbit (SO) coupled Bose Einstein condensate (BEC) and quantum degenerate Fermi gas. By using two counter-propagathlg Ranlan lasers and controlling the different frequency of two R,aman lasers to engineer the atom light interaction, we first study the SO coupling in BEC. Then we study SO coupling in Fermi gas. We, observe the spin dephasing in spin dynamics and momentum distribution asymmetry of the equilibrium state as halhnarks of SO coupling in a Fermi gas. To clearly reveal the, property of SO coupling Fermi gas, we also study the momentmn-resolved radio-frequency spectroscopy which characterizes the energy momentum dispersion and spin composition of the quantum states. We observe the change of errmion surfaces in different helieity branches with different atomic density, which indicates that a Lifshitz transition of the Fermi surface topology change can be found by further cooling the system. At last, we study the momentum-resolved Raman spectroscopy of an ultracoht Fermi gas.  相似文献   

3.
杜佳佳  梁军军  梁九卿 《中国物理 B》2014,23(2):20308-020308
In this paper, we investigate the condensate fraction (CF) of fermionic pairs in the BCS-BEC crossover for three- component Fermi gas with both asymmetric interactions and unequal chemical potentials in two-dimensional free space. By using the functional-path-integral method, we have analytically derived the number densities and bound-state energy, from which the off-diagonal long-range order is analyzed in terms of the asymptotic behavior of the two-body density matrix. The explicit formula of CF is obtained as a function of the bound-state energy and population imbalance. It is demonstrated that the CF spectrum with respect to the bound-state energy can be used to characterize the quantum phase transition between the two kinds of Sarma phases as well as the transition from three-component to two-component superfluid. Moreover we obtain the same analytic formula of CF in the BCS superfluid phase as that of homogeneous Fermi gas with equal chemical potentials.  相似文献   

4.
By employing the balance condition between the lattice potential and the interatomic interaction, we study the ground state solutions of superfluid Fermi gases in Fourier-synthesized (FS) optical lattices. The average energy of the ground state, the atoms number, and the atom density distribution of the Fermi system are analytically derived along the Bose–Einstein condensation (BEC) side to the Bardeen–Cooper–Schrieffer (BCS) side. We analyze the properties of ground state solutions at both the BEC limit and unitarity in FS optical lattices. It is found that the relative phase α between the two lattice harmonics impacts greatly on the properties of the ground state of the superfluid Fermi gas. Especially in the BCS limit, when α=π/2, the average energy presents an exponential form with the increase of the potential depth of the lattice harmonics v2. Meanwhile, there exits a minimal value. Moreover, due to the Fermi pressure, the atom density distribution at unitarity is more outstretched than that in the BEC limit. The average energy at unitarity is apparently larger than that in the BEC limit. The properties of the ground state solution exhibit very different behaviors when the system transits from the BEC side to the BCS side.  相似文献   

5.
S M Moniri  H Yavari  E Darsheshdar 《中国物理 B》2016,25(12):126701-126701
By using a mean-field approximation which describes the coupled oscillations of condensate and noncondensate atoms in the collisionless regime, Landau damping in a dilute dipolar Bose–Fermi mixture in the BEC limit where Fermi superfluid is treated as tightly bounded molecules, is investigated. In the case of a uniform quasi-two-dimensional(2D)case, the results for the Landau damping due to the Bose–Fermi interaction are obtained at low and high temperatures. It is shown that at low temperatures, the Landau damping rate is exponentially suppressed. By increasing the strength of dipolar interaction, and the energy of boson quasiparticles, Landau damping is suppressed over a broader temperature range.  相似文献   

6.
This paper reports that the ground-state energy of polaron was obtained with strong electron-LO-phonon coupling by using a variational method of the Pekar type in a parabolic quantum dot. Quantum transition is occurred in the quantum system due to the electron-phonon interaction and the influence of temperature. That is the polaron transit from the ground-state to the first-excited state after absorbing a LO-phonon and it causes the change of the polaron lifetime. Numerical calculations are performed and the results illustrate that the ground-state lifetime of the polaron will increase with increasing the ground-state energy of polaron and decrease with increasing the electron-LO-phonon coupling strength, the confinement length of the quantum dot and the temperature.  相似文献   

7.
门福殿  刘慧 《中国物理》2006,15(12):2856-2860
In this paper the analytical expression of free energy expressed by small parameter r of a weakly interacting Fermi gas trapped in weak magnetic field is derived by using `the maximum approximation' method and the ensemble theory. Based on the derived expression, the exact instability conditions of a weakly interacting Fermi gas trapped in weak magnetic field at both high and low temperatures are given. From the instability conditions we get the following two results. (1) At the whole low-temperature extent, whether the interactions are repulsive or attractive with (ɑn + 4\varepsilonF/3) (n and \varepsilon F denote the particle-number density and the Fermi energy respectively, ɑ= 4π a\hbarF/ m, and a is s-wave scattering length) positive, there is a lower-limit magnetic field of instability; in addition, there is an upper-limit magnetic field for the system of attractive interactions with (ɑ n + \varepsilonF/3) negative. (2) At the whole high-temperature extent, the system with repulsive interactions is always stable, but for the system with attractive interactions, the greater the scattering length of attractive interactions | a | is, the stronger the magnetic field is and the larger the particle-number density is, the bigger the possibility of instability in the system will be.  相似文献   

8.
For a two-dimensional ultra-cold Fermi superfluid with an effective static magnetic impurity, we theoretically investigated the variation of the Yu–Shiba–Rusinov(YSR) bound state in the Bardeen–Cooper–Schrieffer(BCS) to Bose–Einstein condensation(BEC) crossover regime.Within the framework of mean-field theory, analytical results of the YSR bound state energy were obtained as a function of the interaction parameters.First, when the background Fermi superfluid system stays in the weakly interacting BCS regime, we found that the YSR bound state energy is linearly dependent on the gap parameter with its coefficient slightly different from previous results.Second, we discovered re-entrance phenomena for the YSR state and an upper bound of the strength of the interaction between the paired atoms.By carefully analyzing the bound state energy as a function of the interaction parameters, we obtained a phase diagram showing the existence of the YSR state.Finally, we concluded that the re-entrance phenomena and the critical point can be easily experimentally detected through measurement of radio-frequency spectroscopy and density of states using current experimental techniques.  相似文献   

9.
Interaction between Rydberg atoms can be used to control the properties of interatomic interaction in ultracold gases by weakly dressing the atoms with a Rydberg state. Here we investigate the effect of the Rydberg-dressing interaction on the ground-state properties of a Bose–Einstein condensate imposed by Raman-induced spin–orbit coupling. We find that,in the case of SU(2)-invariant s-wave interactions, the gas is only in the plane-wave phase and the zero-momentum phase is absent. In particular, we also predict an unexpected magnetic stripe phase composed of two plane-wave components with unequal weight when s-wave interactions are non-symmetric, which originates from the Rydberg-dressing interaction.  相似文献   

10.
On the basis of quantum hydrodynamical equations we derive a unitarity Schrodinger equation of a finite trapped superfluid Fermi gas valid in the whole interaction regime from BCS superfluid to BEC. This equation is just the Ginzburg-Laudau-type equation for the fermionic Cooper pairs in the BCS side, the Gross-Pitaevskii-type equation for the bosonic dimers in the BEC side, and a unitarity equation for a strongly interacting Fermi superfluid in the unitarity limit. By taking a modified Gauss-like trial wave function, we solve the unitarity Schrodinger equation, calculate the energy, chemical potential, sizes and profiles of the ground-state condensate, and discuss the properties of the ground state in the entire BCS-BEC crossover regimes.  相似文献   

11.
柏小东  刘锐涵  刘璐  唐荣安  薛具奎 《物理学报》2010,59(11):7581-7585
研究了一维光晶格中超流Fermi气体基态解的性质.在平均场理论框架下,利用超流Fermi体系中原子间相互作用能与晶格势能相互平衡的条件,得到了一维光晶格中超流Fermi气体在整个BEC-BCS跨越区的一组基态解,给出了基态的原子数密度空间分布、总原子数和能量.进一步对系统从BEC端转变到BCS端时的基态解性质进行了深入分析和对比.结果表明,一维光晶格中超流Fermi气体基态分布具有一些特殊的性质,由于Fermi压力,相比而言超流Fermi气体在BCS端的基态原子数密度空间分布较为扩展,平均能量明显偏高.  相似文献   

12.
We show the emergence of a strongly interacting Bose-Fermi mixture from a two-component Fermi mixture with population imbalance. By analyzing in situ density profiles of 6Li atoms in the BCS-BEC crossover regime, we identify a critical interaction strength, beyond which all minority atoms pair up with majority atoms and form a Bose condensate. This is the regime where the system can be effectively described as a boson-fermion mixture. We determine the dimer-fermion and dimer-dimer scattering lengths and beyond-mean-field contributions. Our study realizes a gedanken experiment of bosons immersed in a Fermi sea of one of their constituents, revealing the composite nature of the bosons.  相似文献   

13.
The inelastic transitions between hydrogenic energy levels of a Rydberg atom induced in collisions with ground-state atoms are considered. The corresponding transition probability and cross section are calculated using the Fermi pseudopotential to describe the atom-Rydberg-atom interaction and a quasiclassical expression for the density distribution of the Rydberg electron.  相似文献   

14.
We theoretically examine the creation of a Fermi-degenerate gas of molecules by considering a photoassociation or Feshbach resonance applied to a degenerate Bose-Fermi mixture of atoms. This problem raises interest because, unlike bosons, fermions in general do not behave cooperatively, so that the collective conversion of a degenerate gas atoms into a macroscopic number of diatomic molecules is not to be expected. Nevertheless, we find that the coupled Fermi system displays collective Rabi-like oscillations and a rapid adiabatic passage between atoms and molecules, thereby mimicking Bose-Einstein statistics. Cooperative association of a degenerate mixture of Bose and Fermi gases could therefore serve as a shortcut to a degenerate gas of Fermi molecules.  相似文献   

15.
弱相互作用费米气体的不稳定性判据   总被引:5,自引:0,他引:5       下载免费PDF全文
袁都奇 《物理学报》2006,55(8):3912-3915
根据由赝势法得到的弱相互作用费米气体的自由能,利用热力学方法研究了无外场时弱相互作用费米气体的稳定性.结果表明,无外场情况下理想费米气体与存在弱排斥相互作用的费米气体是稳定的;而具有弱吸引相互作用的费米气体在一定条件下可出现不稳定性.给出了不稳定性的粒子数密度判据和温度判据,就不同逸度情况下临界粒子数密度的具体表达结果以及温度、粒子质量和吸引相互作用对临界粒子数密度的影响进行了讨论. 关键词: 费米气体 相互作用 不稳定性判据  相似文献   

16.
We have observed a gas of Fermi atoms confined in the antinodes of a standing electromagnetic wave. The standing wave is formed by two counter-propagating beams with the wavelength of 10.6 μm focused on the same spot. Each antinode confines a pancake-shaped cloud of 7500 lithium-6 atoms in two equally populated spin states at the temperature T = 0.1E F, where E F is the Fermi energy. The system is in the regime beyond the local density approximation: Only the 3 lowest energy states of the axial motion are populated. The system may become an instrument for the study of 2D Fermi physics and 3D effects beyond the local density approximation.  相似文献   

17.
Yue-Ran Shi 《中国物理 B》2022,31(8):80305-080305
We consider an impurity problem in a quasi-two-dimensional Fermi gas, where a spin-down impurity is immersed in a Fermi sea of N spin-up atoms. Using a variational approach and an effective two-channel model, we obtain the energy for a wide range of interaction strength and for various different mass ratios between the impurity and the background fermion in the context of heteronuclear mixture. We demonstrate that in a quasi-two-dimensional Fermi gas there exists a transition of the ground state from polaron in the weakly interacting region to molecule in the strongly interacting region. The critical interaction strength of the polaron-molecule transition is non-universal and depends on the particle density of the background Fermi sea. We also investigate the excited repulsive polaron state, and find similar non-universal behavior.  相似文献   

18.
We report on progress toward realizing a predicted superfluid phase in a Fermi gas of atoms. We present measurements of both large positive and large negative scattering lengths in a quantum degenerate Fermi gas of atoms near a magnetic-field Feshbach resonance. We employ an rf spectroscopy technique to directly measure the mean-field interaction energy, which is proportional to the s-wave scattering length. Near the peak of the resonance we observe a saturation of the interaction energy; it is in this strongly interacting regime that superfluidity is predicted to occur. We have also observed anisotropic expansion of the gas, which has recently been suggested as a signature of superfluidity. However, we find that this can be attributed to a purely collisional effect.  相似文献   

19.
We investigate a possibility of superfluidity in a trapped gas of Fermi atoms with a repulsive interaction in the presence of an optical lattice. Applying the exact diagonalization method to a one-dimensional Hubbard model including the trap potential, we find that, when the strength of the repulsive interaction exceeds a critical value, the binding energy of two Fermi atoms becomes negative below the half-filling case, indicating that an attractive interaction effectively works between Fermi atoms. In this case, a "Mott insulating core" appears in the center of the trap, where each site is occupied by one atom. The Cooper-pair correlation strongly develops between atoms in the left- and right-hand sides of this core.  相似文献   

20.
The pairing of fermionic atoms in a mixture of atomic fermion and boson gases at zero temperature is investigated. The attractive interaction between fermions, that can be induced by density fluctuations of the bosonic background, can give rise to a superfluid phase in the Fermi component of the mixture. The atoms of both species are assumed to be in only one internal state, so that the pairing of fermions is effective only in odd-l channels. No assumption about the value of the ratio between the Fermi velocity and the sound velocity in the Bose gas is made in the derivation of the energy gap equation. The gap equation is solved without any particular ansatz for the pairing field or the effective interaction. The p-wave superfluidity is studied in detail. By increasing the strength and/or decreasing the range of the effective interaction a transition of the fermion pairing regime, from the Bardeen-Cooper-Schrieffer state to a system of tightly bound couples can be realized. These composite bosons behave as a weakly-interacting Bose-Einstein condensate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号