首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
We use angle-resolved photoemission spectroscopy to investigate the energy gap(s) in (Bi,Pb)2(Sr,La)2CuO6+delta. We find that the spectral gap has two components in the superconducting state: a superconducting gap and pseudogap. Differences in their momentum and temperature dependence suggest that they represent two separate energy scales. Spectra near the node reveal a sharp peak with a small gap below T(c) that closes at T(c). Near the antinode, spectra are broad with a large energy gap of approximately 40 meV above and below T(c). The latter spectral shape and gap magnitude are almost constant across T(c), indicating that the pseudogap state coexists with the superconducting state below T(c), and it dominates spectra around the antinode. We speculate that the pseudogap state competes with the superconductivity by diminishing spectral weight in antinodal regions, where the superconducting gap is largest.  相似文献   

2.
The intermediate valence compound YbAl3 exhibits a broad magnetic excitation in the inelastic neutron scattering spectrum with characteristic energy E1 approximately 50 meV, equal to the Kondo energy (T(K) approximately 600-700 K). In the low temperature (T < T(coh) approximately 40 K) Fermi liquid state, however, a new peak in the scattering occurs at E2 approximately 33 meV, which lies in the hybridization gap that exists in this compound. We report inelastic neutron scattering results for a single-crystal sample. The scattering at energies near E1 qualitatively has the momentum (Q) dependence expected for interband scattering across the indirect gap. The scattering near E2 has a very different Q dependence: it is a weak function of Q over a large fraction of the Brillouin zone and is smallest near (1/2,1/2, 1/2). A possibility is that the peak at E2 arises from a spatially localized excitation in the hybridization gap.  相似文献   

3.
Low-temperature electronic properties of the charge-density-wave system NbSe3 are reported from angle-resolved photoemission at 15 K. The effect of two instabilities q(1) and q(2) on the k-resolved spectral function is observed for the first time. With a pseudogap background, the gap spectra exhibit maxima at Delta*(1) approximately 110 meV and Delta*(2) approximately 45 meV. Imperfectly nested sections of the Fermi surface lack a Fermi-Dirac edge, and show the signature of a dispersion that is modified by self-energy effects. The energy scale is of the order of the effective gap 2 Delta*(2). The effect disappears above T2, suggesting a correlation with the charge-density-wave state.  相似文献   

4.
We report the anisotropic changes in the electronic structure of a Kondo semiconductor CeOs(2)Al(10) across an anomalous antiferromagnetic ordering temperature (T(0)) of 29 K, using optical conductivity spectra. The spectra along the a and c axes indicate that an energy gap due to the hybridization between conduction bands and nearly local 4f states, namely the c-f hybridization gap, emerges from a higher temperature continuously across T(0). Along the b axis, on the other hand, another energy gap with a peak at 20 meV becomes visible at 39 K (>T(0)) and fully opens at T(0) because of a charge instability. This result implies that the appearance of the energy gap, as well as the change in the electronic structure along the b axis, induces the antiferromagnetic ordering below T(0).  相似文献   

5.
Using elastic and inelastic neutron scattering we show that a cubic spinel, CdCr2O4, undergoes an elongation along the c axis (c > a = b) at its spin-Peierls-like phase transition at T(N) = 7.8 K. The Néel phase (T < T(N)) has an incommensurate spin structure with a characteristic wave vector Q(M) = (0, delta,1) with delta approximately 0.09 and with spins lying on the ac plane. This is in stark contrast to another well-known Cr-based spinel, ZnCr2O4, that undergoes a c-axis contraction and a commensurate spin order. The magnetic excitation of the incommensurate Néel state has a weak anisotropy gap of 0.6 meV and it consists of at least three bands extending up to 5 meV.  相似文献   

6.
We present the c-axis optical conductivity sigma(1c)(omega,T) of underdoped (x=0.12) and optimally doped (x=0.15) La2-xSrxCuO4 from 4 meV to 1.8 eV obtained by a combination of reflectivity and transmission spectra. In addition to the opening of the superconducting gap, we observe an increase of conductivity above the gap up to 270 meV with a maximal effect at about 120 meV. This may indicate a new collective mode at a surprisingly large energy scale. The Ferrell-Glover-Tinkham sum rule is violated for both doping levels. Although the relative value of the violation is much larger for the under-doped sample, the absolute increase of the low-frequency spectral weight, including that of the condensate, is higher in the optimally doped regime. Our results resemble in many respects the observations in YBa(2)Cu(3)O(7-delta).  相似文献   

7.
We have performed an angle-resolved photoemission spectroscopy study of the new iron-based superconductor K(0.8)Fe(1.7)Se(2) (T(c)~30 K). Clear band dispersion is observed with the overall bandwidth renormalized by a factor of 2.5 compared to our local density approximation calculations, indicating relatively strong correlation effects. Only an electronlike band crosses the Fermi energy, forming a nearly circular Fermi surface (FS) at M (π, 0). The holelike band at Γ sinks ~90 meV below the Fermi energy, with an indirect band gap of 30 meV, to the bottom of the electronlike band. The observed FS topology in this superconductor favors (π, π) inter-FS scattering between the electronlike FSs at the M points, in sharp contrast to other iron-based superconductors which favor (π, 0) inter-FS scattering between holelike and electronlike FSs.  相似文献   

8.
Using scanning tunneling spectroscopy, we investigated the temperature dependence of the quasiparticle density of states of overdoped Bi(2)Sr(2)CuO(6+delta) between 275 mK and 82 K. Below T(c) = 10 K, the spectra show a gap with well-defined coherence peaks at +/-Delta(p) approximately 12 meV, which disappear at T(c). Above T(c), the spectra display a clear pseudogap of the same magnitude, gradually filling up and vanishing at T(*) approximately 68 K. The comparison with Bi(2)Sr(2)CaCu(2)O(8+delta) demonstrates that the pseudogap and the superconducting gap scale with each other, providing strong evidence that they have a common origin.  相似文献   

9.
We investigate the temperature (T)-dependent low-energy electronic structure of a boron-doped diamond thin film using ultrahigh resolution laser-excited photoemission spectroscopy. We observe a clear shift of the leading edge below T=11 K, indicative of a superconducting gap opening (Delta approximately 0.78 meV at T=4.5 K). The gap feature is significantly broad and a well-defined quasiparticle peak is lacking even at the lowest temperature of measurement (=4.5 K). We discuss our results in terms of disorder effects on the normal state transport and superconductivity in this system.  相似文献   

10.
We report neutron scattering studies on two single crystal samples of the electron-doped (n-type) superconducting (SC) cuprate Nd2-xCexCuO4 (x=0.15) with T(c)=18 and 25 K. Unlike the hole-doped (p-type) SC cuprates, where incommensurate magnetic fluctuations commonly exist, the n-type cuprate shows commensurate magnetic fluctuations at the tetragonal (1/2 1/2 0) reciprocal points both in the SC and in the normal state. A spin gap opens up when the n-type cuprate becomes SC, as in the optimally doped p-type La2-xSrxCuO4. The gap energy, however, increases gradually up to about 4 meV as T decreases from T(c) to 2 K, which contrasts with the spin pseudogap behavior with a T-independent gap energy in the SC state of p-type cuprates.  相似文献   

11.
The correlation-driven metal-insulator transition (MIT) of BaVS(3) was studied by polarized infrared spectroscopy. In the metallic state two types of electrons coexist at the Fermi energy: the quasi-1D metallic transport of A(1g) electrons is superimposed on the isotropic hopping conduction of localized E(g) electrons. The "bad-metal" character and the weak anisotropy are the consequences of the large effective mass m(eff) approximately 7 m(e) and scattering rate Gamma > or = 160 meV of the quasiparticles in the A(1g) band. There is a pseudogap above T(MI) = 69 K, and in the insulating phase the gap follows the BCS-like temperature dependence of the structural order parameter with Delta(ch) approximately 42 meV in the ground state. The MIT is described in terms of a weakly coupled two-band model.  相似文献   

12.
An inelastic neutron scattering study of overdoped Bi(2)Sr(2)CaCu(2)O(8+delta) ( T(c) = 83 K) has revealed a resonant spin excitation in the superconducting state. The mode energy is E(res) = 38.0 meV, significantly lower than in optimally doped Bi(2)Sr(2)CaCu(2)O(8+delta) ( T(c) = 91 K, E(res) = 42.4 meV). This observation, which indicates a constant ratio E(res)/k(B)T(c) approximately 5.4, helps resolve a long-standing controversy about the origin of the resonant spin excitation in high temperature superconductors.  相似文献   

13.
The hole-concentration (x) dependence of the three-dimensional energy-momentum dispersion in (Bi, Pb)2(Sr, La)2CuO(6+delta) has been investigated by angle-resolved photoemission spectroscopy. For a heavily overdoped sample of T(c) < or = 0.5 K, an energy dispersion of approximately 10 meV in width is observed in the vicinity of the (pi, 0) point with varying momentum along the c axis (k(z)). This k(z) dispersion is zero for underdoped, optimally doped, and slightly overdoped samples up to a doping level corresponding to T(c) = 22 k. At higher doping levels we observe significant dispersion of the order of 10 meV (sample with T(c) < or = 0.5 K). This is clear evidence that at a doping value corresponding to T(c) = 22 K, a crossover from two- to three-dimensional electronic structure occurs.  相似文献   

14.
Superconductor-insulator-superconductor tunnel junctions have been fabricated on MgB2 that display Josephson and quasiparticle currents. These junctions exhibit a gap magnitude, Delta approximately 2.5 meV, that is considerably smaller than the BCS value, but which clearly and reproducibly closes near the bulk T(c). In conjunction with fits of the conductance spectra, these results are interpreted as direct evidence of two-band superconductivity.  相似文献   

15.
A spectroscopic determination of the energy gap Eg and the exciton energy Ex in highly excited Ge at T = 5–20K is presented. Within 0.05 meV we observe no shift of Eg and Ex up to electron-hole densities of 1014?1015 cm?3. In this range all previous theories predict a sizeable band renormalization (ΔEg ≈?0.3 meV to ? 2 meV).  相似文献   

16.
In photoluminescence spectroscopy of a low-mobility two-dimensional electron gas subjected to a quantizing magnetic field, we observe an anomaly around nu=1 / 3 at a very low temperature (0.1 K) and an intermediate electron density (0.9 x 10(11) cm(-2)). The anomaly is explained as due to perturbation of the incompressible liquid at the Laughlin state due to close proximity of a localized charged exciton which creates a fractionally charged quasihole in the liquid. The anomaly of approximately 2 meV can be destroyed by applying a small thermal energy of approximately 0.2 meV that is enough to close the quasihole energy gap.  相似文献   

17.
We used magnetic susceptibility, resistivity and heat capacity measurements to characterize the superconducting state in the Einstein solid V Al(10.1). We find that V Al(10.1) is a weak-coupling, type-II superconductor with T(c)?=?1.53?K and an upper critical field of H(c2)(0)?=?800?Oe. The heat capacity data in the range 0.07?K?相似文献   

18.
We have studied the low-energy spin-excitation spectrum of the single-crystalline Rb(2)Fe(4)Se(5) superconductor (T(c)=32 K) by means of inelastic neutron scattering. In the superconducting state, we observe a magnetic resonant mode centered at an energy of ?ω(res)=14 meV and at the (0.5 0.25 0.5) wave vector (unfolded Fe-sublattice notation), which differs from the ones characterizing magnetic resonant modes in other iron-based superconductors. Our finding suggests that the 245-iron selenides are unconventional superconductors with a sign-changing order parameter, in which bulk superconductivity coexists with the √5×√5 magnetic superstructure. The estimated ratios of ?ω(res)/k(B)T(c)≈5.1±0.4 and ?ω(res)/2Δ≈0.7±0.1, where Δ is the superconducting gap, indicate moderate pairing strength in this compound, similar to that in optimally doped 1111 and 122 pnictides.  相似文献   

19.
We have investigated hole doped (by lithium) and electron-doped (by nickel metal) NiO with photoemission (PES), inverse photoemission (IPES) and low and high energy electron energy loss spectroscopy (EELS). Both types of doping create empty states approximately in the middle of the charge transfer gap of undoped NiO.  相似文献   

20.
We use high-resolution inelastic neutron scattering to study the low-temperature magnetic excitations of the electron-doping superconductor Pr(0.88)LaCe(0.12)CuO(4-delta) (T(c) = 21 +/- 1 K) over a wide energy range (4 meV < or = homega < or = 330 meV). The effect of electron doping is to cause a wave vector (Q) broadening in the low-energy (homega < or = 80 meV) commensurate spin fluctuations at (0.5, 0.5) and to suppress the intensity of spin-wave-like excitations at high energies (homega > or = 100 meV). This leads to a substantial redistribution in the spectrum of the local dynamical spin susceptibility chi'(omega), and reveals a new energy scale similar to that of the lightly hole-doped YB2Cu3O(6.353) (T(c) = 18 K).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号