首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 455 毫秒
1.
The 169Tm(t, α)168Er reaction has been studied using 17 MeV polarized tritons from the Los Alamos National Laboratory tandem Van de Graaff accelerator. The α-spectra were analyzed with a Q3D magnetic spectrometer. The overall energy resolution was typically ~ 15 keV (FHWM) and angular distributions of cross sections and analyzing powers were obtained for levels up to ~ 2.7 MeV. The fact that spins and parities for all levels up to ? 2 MeV were previously known from an extensive series of (n, γ) studies made it possible to determine specific two-quasiproton structures for many bands from the present results. The Kπ = 2+ γ-vibrational band was found to have a large 32+ [411]p + 12+[411]p admixture, consistent with the predicted microscopic composition of this phonon, but no 52[413]p ? 12+ [411]p component was observed. The Kπ = 04+ band at 1833 keV has ~ 25% of the 12+ [411]p ? 12+[411]p two-quasiproton strength. This is in excellent agreement with the Soloviev model but is inconsistent with the interacting boson model, in which the Kπ = 04+ band is composed almost completely of multiphonon configurations that should not be populated in a single-nucleon transfer reaction. The Kπ = 4?, 72?[523]p + 12+ [411]p two-quasiproton and the Kπ = 4?, 72+[633]n + 12?[521]n two-quasineutron states are mixed strongly with each other, but the two Kπ = 3? bands composed of antiparallel couplings of the same particles are not. A good qualitative explanation of this mixing pattern is provided in terms of the effective neutron-proton interaction.  相似文献   

2.
Using a target prepared by on-line isotope separation, thermal neutron capture in 84Rb (Iπ = 2?) has been shown to induce proton emission to the ground state (0+) and first excited state (2+) of 84Kr. The branching ratio was measured as Γp(0+)Γp(2+) = 4.7 ± 0.7, favouring a 32? assignment of the capturing state without excluding 52?, and the (nth, p) cross section as 12 ± 2 b. The energy available for the process was determined to be 3.45 ± 0.01 MeV, in agreement with other mass data in the region.  相似文献   

3.
The 152Sm(t, α)151Pm reaction was studied using 17 MeV polarized tritons from the tandem Van de Graaff accelerator at the Los Alamos Scientific Laboratory. The α-particles were analyzed using a Q3D magnetic spectrometer and detected with a helical-cathode position-sensitive counter. The overall resolution was ~ 18 keV FWHM. Measurements of the 150Nd(3He, d)151Pm reaction were made using 24 MeV 3He beams from the McMaster University tandem accelerator. The deuteron spectra were analyzed with a magnetic spectrograph using photographic emulsions for detectors, yielding a resolution of ~ 13 keV FWHM. By comparing the measured angular distributions of (t, α) and (3He, d) cross sections and (t, α) analyzing powers with DWBA predictions it was possible to assign spins and parities to many levels. The present results confirm earlier assignments of rotational bands based on the low-lying 52+ [413], 52?[532], 32+ [411] and12+ [420] orbitals. In addition, states at higher excitation have now been assigned to the 12+[411] and72+ [404] orbitals, and members of the 32+[422], 52+ [402], 32? [541] and72? [523] bands are tentatively proposed. The spectroscopic strengths can be explained reasonably well by the Nilsson model when pairing and Coriolis mixing effects are included.  相似文献   

4.
Levels in 42Ti up to 4 MeV have been investigated using the 40Ca(3He, n)42Ti reaction and a neutron time-of-flight method. Using the DSA method, lifetimes of 750±300, > 200, 350±250, > 2000 and < 250 fs have been measured for levels at Ex = 1.56, 1.85, 2.40, 2.68 and 3.74 MeV respectively. The level at Ex = 3043.0±1.5 keV is tentatively identified as the 6+ member of the (f72)2 configuration, and its mean life has been measured as 26±5 ns by a direct timing method. Using isospin formalism, transition strengths are compared with theoretical and experimental values for 42Ca and 42Sc.  相似文献   

5.
6.
π+ and π? elastic and inelastic scattering from 18O have been measured at T(π)=164 MeV. Consistent with the results at 230 MeV, it is found that the ratio σ(π?)σ(π+) for the 21+ state is 1.86(16), while for the 31? state it is 0.89(6). These results are interpreted as indicating differences in neutron and proton deformations characterizing the 21+ transition and partial neutron blocking for the 31? transition. Optical model analysis of elastic scattering leads to the conclusion that 〈rn212?〈rp212=0.03(3) fm.  相似文献   

7.
The decay K+ → e+υγ has been investigated. For the structure-dependent part with positive γ-helicity (SD+) the branching ratio Γ(SD+)Γ(Kμ2) = (2.33 ± 0.42) × 10?5 is obtained from 51 ± 3 events observed in the kinematical region Ee ? 235 MeV, Eγ > 48 MeV and θeγ > 140°. For the corresponding part with negative γ-helicity we obtain an upper limit Γ(SD?)/Γ(SD+) < 11 (90% CL) from the sample of electrons with energies 220 MeV ? Ee < 230 MeV and with no γ in the backward direction. This upper limit implies that the ratio of structure-dependent axial vector amplitudes lies outside the region ?1.8 < aKυK < ?0.54.For the decay K+e+ννν the limit Γ(K+e+ννν)/Γ(Ke2) < 3.8 90% confidence level) was found.  相似文献   

8.
We have measured 16O17O elastic cross sections at 22 MeV between 65°–140° to ± 1 %. The observed oscillatory interference between Coulomb scattering and the neutron transfer process is analyzed using exact finite-range DWBA. A model-independent value of C?2 = 0.82 ± 0.07 is obtained for the coupling constant of the 1d52 neutron in 17O. We also present an analysis of data on magnetic electron scattering from 17O, which yields precise information on the magnitude and the radial shape of the 1d52 neutron bound-state wave function. With this we relate the coupling constant to the spectroscopic factor and find S = 1.04 ± 0.11. We show that the magnetic electron scattering data alone yield S = 1.04 ± 0.10. Combining these results with earlier work we recommend C?2 = 0.79 ± 0.04 and S = 1.03 ± 0.07 as best values. This spectroscopic strength corresponds to (91 ± 7) % of the full single-particle value.  相似文献   

9.
10.
The search for magnetic dipole transitions from the ground state-even Ca isotopes to high lying Jπ=1+ states by means of low momentum transfer but high resolution inelastic electron scattering is described. The previously detected strongly excited Jπ=1+ state EX=10.319 MeV [B(M1)↑=1.12±0.27μK2] in 40Ca has been confirmed, but - contrary to the expectations of the independent particle shell model - only a fairly weak M1 transition is observed in 42Ca [EX = 11.235 MeV, B(M1)↑=0.59±0.05 μ2K] and none in 44Ca between EX=8.2?12.2 MeV. In 48Ca, however, a very strong M1 transition [B(M1) ↑ = 4.0 ± 0.3 μ2K] to a single state at EX=10.227 MeV has been discovered.  相似文献   

11.
In a study of the γ-radiation emitted in the reaction 176Yb(p, 2n) excited states of the nucleus 175Lu up to spin I = 132 have been investigated. The main results concern the rotational bands 12+ [411]and 12? [541]with the corresponding band heads found at 626.60 and 370.88 keV, respectively. The half-life of the 12+[411] level has been determined to be T12 = 10.7±0.5 ns. Furthermore, the band heads 32?[532]and 32+[411]are proposed at energies of 999.0 and 1150.8 keV, respectively. Experimental E1 transition probabilities between both K = 12 bands are compared with calculations including the Coriolis and pairing effects, as well as theoretically deduced quadrupole deformation parameters.  相似文献   

12.
States in 92Tc have been studied by means of the 92Mo(3He, t) reaction at 27.5 MeV. The Q-value for this reaction and the excitation energy of the isobaric ground state analogue of 92Mo were determined to be ?7.882 ± 0.030 MeV and 3.813 ± 0.030 MeV respectively. Strongly populated levels in 92Tc appear to belong to configurations arising from the (1g92)π(1g92)ν?1 multiplet.  相似文献   

13.
Gamma-ray spectra following the 165Ho(α, 2n)167Tm reaction have been studied using different semiconductor detector systems including a Compton suppression spectrometer. Approxi- mately 400 transitions have been observed in the energy range 60 to 1250 keV and 4 × 107 γγ coincidence events have been recorded. The angular distributions of the more intense γ-rays have been determined. The level scheme of 167Tm has been extended in several respects: The four previously known rotational bands based on the Nilsson orbitais 12+[411], 72+[404], 72?[523] an 12?[541] have been extended up to spin values 312, 312, 312, 332 respective based on the 32+[411] and 52+[402] orbitals have been established for which only few levels were known previously. Finally two hitherto unknown rotational bands have been found for which we propose the assignments {72+[404]; K + 2} and 32?[532] + {12?[541]; K?2}. Coriolis coup calculations are presented. The value of (1?δK, 12b0) (gK?gR)/Q0 was determined for three bands from branching ratios and from angular distributions.  相似文献   

14.
15.
From the study of the reaction π?p→pFppπ? using a fast proton (pF) trigger device in the CERN Omega spectrometer, we find evidence for two narrow pp states produced mainly in association with a Δ° (1232) and a N° (1520). The statistical significance of each peak is greater than 6 standard deviations. Masses and natural widths of these resonances are respectively M = 2020 ± 3 MeV, Λ1 = 24 ± 12 MeV and M2 = 2204 ± 5 MeV, Λ2 = 16?16+20 MeV. Our data are consistent with a small production of the narrow ~ 1935 MeV resonance already reported. Production cross sections for these new pp resonances are given.  相似文献   

16.
Deuteron-alpha angular correlations have been measured for the reaction 14C(6Li,d)18O1→α0+14C at E(6Li)=34 MeV and θdlab=10°. Transitions involving the 11.69 MeV (6+) and the 17.6±0.2 MeV 18O states have been analyzed. Spin and parity are confirmed for the known 11.69 MeV (6+) state and assigned to be 8+ for the 17.6 MeV level. This last is suggested to be the fifth member of the positive-parity 18O rotational band built on the 3.63 MeV (0+) level.  相似文献   

17.
A stroboscopic technique for the observation of quadrupole hyperfine interactions of isomeric nuclear states has been successfully developed. The inherent precision and resolution of this technique have been demonstrated by measuring the quadrupole hyperfine frequency for 69Ge(92+1, τ = 4.0μ) in Zn metal at several temperatures; ω0 = [19.67 ± 0.06] × 106s?1 (at 623 ± 3 K).  相似文献   

18.
The isothermal compressibilities of pristine graphite and stages 1 and 2 potassium-graphite have been measured at room temperature. Diamond anvil X-ray diffraction techniques were employed to determine the c-axis lattice constant as a function of hydrostatic pressure up to 12 kbar. The compressibilities kc ? 1C33 were found to be (2.73±0.09)×10-12, (2.13±0.09)×10-12, (5.3±0.8)×10-12 and (1.6±0.2)×10-12cm2dyn for graphite, KC8, stage 2 KC24 and stage 3 KC24, respectively. The compressibility of KC8 was comparable to that of RbC8 deduced from neutron scattering experiments.  相似文献   

19.
Three enhancements are observed in the final state ω°π+π+π++π?π? selected from the channel pp → 3π+? π° at 715 MeV/c: one in ω°π± at 1040 MeV (~ ≈ 55MeV) ω°π+π?, respectively near 1315 MeV (~ ≈ 100 MeV) and 1405 MeV (~ ≈ 40 MeV). The first two effects are strongly correlated and are interpreted in terms of a sequential decay A°2 through a new object, the B1. The second (ωππ) enhancement seems to be an ?°?° effect below threshold and is attributed to a pionic decay of the KK)I=1 effect seen around the same mass in other reactions.  相似文献   

20.
The 40Ca(α, 3He) reaction has been studied at 36 MeV incident energy. About fifty levels have been observed up to 7.1 MeV excitation energy and angular distributions were measured from 6–60° using a split-pole spectrometer. A local zero-range DWBA analysis has been carried out, and the deduced l-assignments and spectroscopic factors are compared with those obtained from previous neutron stripping experiments. Core-excited states in 41Ca with a [3? ? f7,2], [2+ ? f7,2] and [5? ? f7,2] component previously observed in inelastic scattering experiments, are selectively excited by the (α, 3He) reaction. Their angular distributions are compared with coupled-reaction-channel calculations, assuming a pure two-step reaction mechanism. The agreement between theory and experiment may be considered as rather satisfactory for a number of levels. In particular the 12+and32+ levels and the high-spin states with Jπ = 92?, 112+, 152+and172+ are successfully described within the framework of the weak-coupling model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号