首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 418 毫秒
1.
The effects of stimulus frequency on two-tone suppression were investigated in single auditory-nerve fibers of anesthetized cats and compared with human psychophysical data. In the physiological experiment, both average discharge rate and phase-locked activity were measured in response to one- and two-tone stimuli. The first component f1 produced an increase in rate above spontaneous activity when presented alone. The second tone f2 was always well below the fiber's characteristic frequency and was held at a fixed sound pressure level appropriate to produce two-tone suppression. Responses were plotted as a function of stimulus level of the first tone both alone and in the presence of f2. For different values of f1 with f2 fixed, suppression was maximum with f1 near fiber CF. In the psychophysical experiment, similar stimulus parameters of f1 and f2 were used as the masker in a forward-masker paradigm. In this experiment the addition of the second masker tone at frequency f2 could produce less masking of the signal. When f1 was varied with f2 fixed, the relative decrease in masking, analogous to suppression, was greatest when f1 was equal to the signal frequency.  相似文献   

2.
Sounds with frequencies >15 kHz elicit an acoustic startle response (ASR) in flying crickets (Eunemobius carolinus). Although frequencies <15 kHz do not elicit the ASR when presented alone, when presented with ultrasound (40 kHz), low-frequency stimuli suppress the ultrasound-induced startle. Thus, using methods similar to those in masking experiments, we used two-tone suppression to assay sensitivity to frequencies in the audio band. Startle suppression was tuned to frequencies near 5 kHz, the frequency range of male calling songs. Similar to equal loudness contours measured in humans, however, equal suppression contours were not parallel, as the equivalent rectangular bandwidth of suppression tuning changed with increases in ultrasound intensity. Temporal integration of suppressor stimuli was measured using nonsimultaneous presentations of 5-ms pulses of 6 and 40 kHz. We found that no suppression occurs when the suppressing tone is >2 ms after and >5 ms before the ultrasound stimulus, suggesting that stimulus overlap is a requirement for suppression. When considered together with our finding that the intensity of low-frequency stimuli required for suppression is greater than that produced by singing males, the overlap requirement suggests that two-tone suppression functions to limit the ASR to sounds containing only ultrasound and not to broadband sounds that span the audio and ultrasound range.  相似文献   

3.
Across-critical-band processing of amplitude-modulated tones   总被引:2,自引:0,他引:2  
Two experiments using two-tone sinusoidally amplitude-modulated stimuli were conducted to assess cross-channel effects in processing low-frequency amplitude modulation. In experiment I, listeners were asked to discriminate between two sets of two-tone amplitude-modulated complexes. In one set, the modulation phase of the lower frequency carrier tone was different from that of the upper frequency carrier tone. In the other stimulus set, both amplitude-modulated carriers had the same modulator phase. The amount of phase shift required to discriminate between the two stimulus sets was determined as a function of the separation between the two carriers, modulation depth, and modulation frequency. Listeners could discriminate a 50 degrees-60 degrees phase shift between the modulated envelopes for tones separated by more than a critical band. In experiment II, the modulation depth required to detect modulation of a probe carrier was measured in the presence of an amplitude-modulated masker. The threshold for detecting probe modulation was determined as a function of the separation between the masker and probe carriers, the phase difference between the masker and probe modulators, and masker modulation depth (in all conditions, the rate of probe and masker modulation was 10 Hz). The threshold for detecting probe modulation was raised substantially when the masker tone was also modulated. The results are consistent with theories suggesting that amplitude modulation helps form auditory objects from complex sound fields.  相似文献   

4.
Multicomponent stimuli consisting of two to seven tones were used to study suppression of basilar-membrane vibration at the 3-4-mm region of the chinchilla cochlea with a characteristic frequency between 6.5 and 8.5 kHz. Three-component stimuli were amplitude-modulated sinusoids (AM) with modulation depth varied between 0.25 and 2 and modulation frequency varied between 100 and 2000 Hz. For five-component stimuli of equal amplitude, frequency separation between adjacent components was the same as that used for AM stimuli. An additional manipulation was to position either the first, third, or fifth component at the characteristic frequency (CF). This allowed the study of the basilar-membrane response to off-CF stimuli. CF suppression was as high as 35 dB for two-tone combinations, while for equal-amplitude stimulus components CF suppression never exceeded 20 dB. This latter case occurred for both two-tone stimuli where the suppressor was below CF and for multitone stimuli with the third component=CF. Suppression was least for the AM stimuli, including when the three AM components were equal. Maximum suppression was both level- and frequency dependent, and occurred for component frequency separations of 500 to 600 Hz. Suppression decreased for multicomponent stimuli with component frequency spacing greater than 600 Hz. Mutual suppression occurred whenever stimulus components were within the compressive region of the basilar membrane.  相似文献   

5.
Release from masking caused by envelope fluctuations   总被引:1,自引:0,他引:1  
This paper examines how short-term energy fluctuations in a masker affect the thresholds for tones at frequencies above those of the masker. Two equally intense tones at 1060 and 1075 Hz produce up to 25 dB less masking than does a 1075-Hz tone set to the overall level of the two-tone complex. At wider frequency separations, two-tone complexes also produce less masking than the pure tone. These results indicate that envelope fluctuations in a masker, whose spectrum is confined to a single critical band, may result in release from masking. The release from masking probably is related to the comodulation masking release reported by Hall et al. [J. Acoust. Soc. Am. 76, 50-56 (1984b)] for modulated-noise maskers with bandwidths greater than one critical band. Further measurements with maskers, whose intensity level in the critical band around 1 kHz was 90 dB SPL, show similar masking by a pure tone and a 625- to 1075-Hz bandpass noise, but less masking by narrow-band noises. These results are inconsistent with a simple frequency selective energy-detector model and indicate that the auditory system can use periods of low masker energy as brief as a few ms to enhance detection of a tone. The results also imply that the upward spread of excitation is best represented by masking patterns for noises with bandwidths of several critical bands.  相似文献   

6.
This study investigated noise-induced changes in suppression growth (SG) of distortion product otoacoustic emissions (DPOAEs). Detailed measurements of SG were obtained in rabbits as a function of f2 frequencies at four primary-tone levels. SG measures were produced by using suppressor tones (STs) presented at two fixed distances from f2. The magnitude of suppression was calculated for each ST level and depicted as contour plots showing the amount of suppression as a function of the f2 frequency. At each f2, SG indices included slope, suppression threshold, and an estimate of the tip-to-tail value. All suppression measures were obtained before and after producing a cochlear dysfunction using a monaural exposure to a 2-h, 110-dB SPL octave-band noise centered at 2 kHz. The noise exposure produced varying amounts of cochlear damage as revealed by changes in DP-grams and auditory brainstem responses. However, average measures of SG slopes, suppression thresholds, and tip-to-tail values failed to mirror the mean DP-gram loss patterns. When suppression-based parameters were correlated with the amount of DPOAE loss, small but significant correlations were observed for some measures. Overall, the findings suggest that measures derived from DPOAE SG are limited in their ability to detect noise-induced cochlear damage.  相似文献   

7.
Brain-stem auditory-evoked responses (BAERs) were obtained in six normal-hearing adults using single-tone and two-tone stimuli arithmetically centered around 4000 Hz. Two-tone stimuli varied in frequency separation from 200 to 3200 Hz, and started in-phase (homophasic) or 180 deg out-of-phase (antiphasic) with each other. Responses to each of the single-tone components of the two-tone stimuli were elicited and then summed for comparison with responses to the two-tone stimuli. Results indicated no significant difference in wave V latency between homophasic or antiphasic two-tone conditions, and summed single-tone conditions. Under the homophasic condition, the mean latency for the widest frequency separation of the tones was significantly longer than those for narrower separations. A significant difference in wave V amplitude between two-tone phase conditions was found for frequency separations of 200, 400, and 3200 Hz only. Summed single-tone BAERs demonstrated a significantly larger wave V amplitude than responses from either two-tone phase condition at all frequency separations.  相似文献   

8.
The physiological basis of auditory frequency selectivity was investigated by recording the temporal response patterns of single cochlear-nerve fibers in the cat. The characteristic frequency and sharpness of tuning was determined for low-frequency cochlear-nerve fibers with two-tone signals whose frequency components were of equal amplitude and starting phase. The measures were compared with those obtained with sinusoidal signals. The two-tone characteristic frequency (2TCF) is defined as the arithmetic-center frequency at which the fiber is synchronized to both signal frequencies in equal measure. The 2TCF closely corresponds to the characteristic frequency as determined by the frequency threshold curve. Moreover, the 2TCF changes relatively little (2%-12%) over a 60-dB intensity range. The 2TCF generally shifts upward with increasing intensity for cochlear-nerve fibers tuned to frequencies below 1 kHz and shifts downward as a function of intensity for units with characteristic frequencies (CF's) above 1 kHz. The shifts in the 2TCF are considerably smaller than those observed with sinusoidal signals. Filter functions were derived from the synchronization pattern to the two-tone signal by varying the frequency of one of the components over the fiber's response area while maintaining the other component at the 2TCF. The frequency selectivity of the two-tone filter function was determined by dividing the vector strength to the variable frequency signal by the vector strength to the CF tone. The filter function was measured 10 dB down from the peak (2T Q 10 dB) and compared with the Q 10 dB of the frequency threshold curve. The correlation between the two measures of frequency selectivity was 0.72. The 2T Q 10 dB does change as a function of intensity. The magnitude and direction of the change is dependent on the sharpness of tuning at low and moderate sound-pressure levels (SPL's). The selectivity of the more sharply tuned fibers (2T Q 10 dB greater than 3) diminishes at intensities above 60 dB SPL. However, the broadening of selectivity is relatively small in comparison to discharge rate-based measures of selectivity. The selectivity of the more broadly tuned units remains unchanged or improves slightly at similar intensity levels. The present data indicate that the frequency selectivity and tuning of low-frequency cochlear-nerve fibers are relatively stable over a 60-dB range of SPL's when measured in terms of their temporal discharge properties.  相似文献   

9.
The two nonlinear effects of two-tone suppression and of (2f1-f2)-difference tone creation are measured in a hardware model which consists of 90 sections containing nonlinear feedback loops. The basic data are the level and phase distributions along the 90 sections produced by single tones in the linear passive system which are almost identical to those produced in the nonlinear active system at high levels. Enhancement is created at medium and low input levels resulting in more strongly peaked level-place patterns. Two-tone suppression is, therefore, described as a "de-enhancement" which is produced by the gain reduction in the saturating nonlinearity of the feedback loop in consequence of increasing input levels (that of the feedback loop in consequence of increasing input levels (that of the suppressor as well!). Characteristics of suppression are given in normalized form. The creation of (2f1-f2)-difference tones is based on the same nonlinear effects. In each section, difference-tone wavelets are created which travel--changing level and phase thereby--to their characteristic place, where they add up to a vector sum corresponding to the audible difference tone. In case of cancellation, the vector sum has to be compensated by an additional tone of the same frequency and amount but opposite phase. Based on this strategy of (2f1-f2)-difference tone development, the relevant relations are measured on the model and averaged either in normalized graphs or in equations in order to offer the possibility to simulate the hardware model on the computer. Psychoacoustically measured cancellation data are compared with data measured using the model. The two data sets agree not only in general but also in many details indicating that the model describes cochlear nonlinear preprocessing to a useful approximation.  相似文献   

10.
Many of the aspects of the interaction of spontaneous otoacoustic emissions with external tones (suppression and synchronization) can be qualitatively simulated by the behavior of a single driven Van der Pol oscillator. Analytical and numerical investigations of a model of spontaneous otoacoustic emissions based on such an oscillator (with appropriate parametric changes in the nonlinear and negative damping components) lead to predictions of the nature of the changes in suppression and synchronization (frequency-locking) tuning curves when the levels of spontaneous otoacoustic emissions are modified. Observations of the suppression and synchronization of spontaneous otoacoustic emissions by external tones of different frequencies and levels were obtained while the levels of spontaneous emissions were altered by aspirin administration. Modeling an emission as a single Van der Pol oscillator qualitatively accounts for: (1) the reduction of the level of an external tone required to suppress the emission by a decibel amount equivalent to the level reduction induced by aspirin administration; (2) the broadening of the frequency-locking tuning curve of an emission whose level is reduced; and (3) the pulling of the emission frequency by an external tone. It does not account for: (1) the observed asymmetry in the slopes of the external-tone suppression curves (more gradual for frequencies of the suppressor tone higher, rather than lower, than that of the emission); and (2) the frequency pushing of the emission by an external tone.  相似文献   

11.
Distortion product otoacoustic emission (DPOAE) suppression measurements were made in 20 subjects with normal hearing and 21 subjects with mild-to-moderate hearing loss. The probe consisted of two primary tones (f2, f1), with f2 held constant at 4 kHz and f2/f1 = 1.22. Primary levels (L1, L2) were set according to the equation L1 = 0.4 L2 + 39 dB [Kummer et al., J. Acoust. Soc. Am. 103, 3431-3444 (1998)], with L2 ranging from 20 to 70 dB SPL (normal-hearing subjects) and 50-70 dB SPL (subjects with hearing loss). Responses elicited by the probe were suppressed by a third tone (f3), varying in frequency from 1 octave below to 1/2 octave above f2. Suppressor level (L3) varied from 5 to 85 dB SPL. Responses in the presence of the suppressor were subtracted from the unsuppressed condition in order to convert the data into decrements (amount of suppression). The slopes of the decrement versus L3 functions were less steep for lower frequency suppressors and more steep for higher frequency suppressors in impaired ears. Suppression tuning curves, constructed by selecting the L3 that resulted in 3 dB of suppression as a function of f3, resulted in tuning curves that were similar in appearance for normal and impaired ears. Although variable, Q10 and Q(ERB) were slightly larger in impaired ears regardless of whether the comparisons were made at equivalent SPL or equivalent sensation levels (SL). Larger tip-to-tail differences were observed in ears with normal hearing when compared at either the same SPL or the same SL, with a much larger effect at similar SL. These results are consistent with the view that subjects with normal hearing and mild-to-moderate hearing loss have similar tuning around a frequency for which the hearing loss exists, but reduced cochlear-amplifier gain.  相似文献   

12.
Five subjects with unilateral cochlear hearing impairments and three normally hearing subjects made loudness matches between tones presented alternately to two ears, as a function of the intensity of the tone in the impaired ear (or the left ear of the normal subjects). The impaired ears showed recruitment; the rate of growth of loudness with increasing intensity was more rapid in the impaired ear than the normal ear. Presenting the tone in the impaired ear with two noise bands on either side of the tone frequency, at a fixed signal-to-noise ratio, did not abolish the recruitment. This suggests that recruitment is not caused by an abnormally rapid spread of excitation in the peripheral auditory system. At low signal-to-noise ratios, a continuous background noise reduced the loudness of the tone more than a noise gated with the tone, suggesting that the continuous noise induces adaptation to the tone. The noise had a greater effect on the loudness of the tone in normal ears than in impaired ears. It is possible that the loudness reduction of the tone in noise is mediated by suppression; suppression is weak or absent in impaired ears, and so the loudness reduction is smaller.  相似文献   

13.
Rate-intensity functions (RIFs) were generated in response to characteristic frequency (CF) tones presented alone and in the presence of broadband noise for neurons in the central nucleus of the inferior colliculus (IC) of the anesthetized guinea pig. Seventy-six percent of the RIFs to CF tones were monotonic (some showing incomplete saturation), and 24% were nonmonotonic. The RIFs to continuous noise were more nonmonotonic than those to CF tones. In continuous or gated noise, the dynamic portion of the RIF to a tone was shifted to a higher tone level, with little change in the dynamic range. Above a threshold noise level, the shift was a linear function of noise level with slope 0.97. Little shift occurred when the noise was inversely gated with respect to the tone burst, suggesting that the underlying mechanism is suppression rather than adaptation. For 63% of units, the maximum discharge rate to a tone in low levels (less than 0-dB spectrum level) of noise (including inversely gated) was greater than to the tone alone. Although many of the effects of noise in the IC reflect peripheral mechanisms, they are supplemented by centrally based processes which enhance the detectability of tone intensity increments in the presence of noise.  相似文献   

14.
Stimulus-frequency otoacoustic emissions (SFOAEs) have been measured in several different ways, including (1) nonlinear compression, (2) two-tone suppression, and (3) spectral smoothing. Each of the three methods exploits a different cochlear phenomenon or signal-processing technique to extract the emission. The compression method makes use of the compressive growth of emission amplitude relative to the linear growth of the stimulus. The emission is defined as the complex difference between ear-canal pressure measured at one intensity and the rescaled pressure measured at a higher intensity for which the emission is presumed negligible. The suppression method defines the SFOAE as the complex difference between the ear-canal pressure measured with and without a suppressor tone at a nearby frequency. The suppressor tone is presumed to substantially reduce or eliminate the emission. The spectral smoothing method involves convolving the complex ear-canal pressure spectrum with a smoothing function. The analysis exploits the differing latencies of stimulus and emission and is equivalent to windowing in the corresponding latency domain. Although the three methods are generally assumed to yield identical emissions, no equivalence has ever been established. This paper compares human SFOAEs measured with the three methods using procedures that control for temporal drifts, contamination of the calibration by evoked emissions, and other potential confounds. At low stimulus intensities, SFOAEs measured using all three methods are nearly identical. At higher intensities, limitations of the procedures contribute to small differences, although the general spectral shape and phase of the three SFOAEs remain similar. The near equivalence of SFOAEs measured by compression, suppression, and spectral smoothing indicates that SFOAE characteristics are not mere artifacts of measurement methodology.  相似文献   

15.
The responses of single auditory-nerve fibers in anesthetized cats to two-tone stimuli were studied. One of the two tones, F1, was near, above, or below characteristic frequency (CF). The second tone, F2, was located above CF. With sufficient care, F2 was made purely suppressive, eliciting no synchrony responses by itself. The vector phases of the associated period histogram calculated for F1 were carefully studied. For 78% of the fibers under study, a statistically significant increase in phase lag was consistently observed when a suppression of rate discharge occurred. The phase-intensity curve did not approximate a horizontally shifted version of the unsuppressed curve, as is seen for the related rate- and synchrony-intensity curves; rather, the amount of phase shift at any one stimulus condition tended to be monotonically related to the amount of rate suppression generated (vertical shift). Using two different measures, a significant correlation was found between the added phase lag and the discharge-rate reduction caused by F2. The amount of phase lag, along with the corresponding rate reduction, increases with the increasing intensity of F2 within the suppression area, and decreases as F2 moves away from it. These phase-lag effects were found to be uncorrelated with a fiber's CF, with its spontaneous rate, with its threshold, or with its Q value. By contrast, a reduction of discharge rate due to adaptation was not accompanied by any significant phase shift. Fatigue of the fiber due to lengthy sound exposure was found to have strong effects on the shift of response phase to single-tone stimuli.  相似文献   

16.
Effects of signal envelope on the pitch of short sinusoidal tones   总被引:1,自引:0,他引:1  
The pitch of short sinusoidal tones with exponentially rising or decaying envelopes is judged higher than the pitch of a gated tone of the same frequency, duration, and energy. The upward pitch shift depends on the rise or decay rate, the intensity, and the frequency. The effect, which requires a nonlinearity in the auditory system, cannot be adequately explained by existing models of hearing. Control experiments on pitch matching for short tones of varying duration and varying intensity are described. These suggest that envelope-induced pitch effects are linked to changes in average intensity, so that they are essentially the same as intensity-induced pitch changes. A model based on these considerations is proposed.  相似文献   

17.
Two-tone "synchrony suppression" was studied in responses of single auditory nerve fibers recorded from anesthetized cats. Suppression thresholds for suppressor tones set to a fiber's characteristic frequency (CF) were approximately equal to discharge rate thresholds for CF tones. Suppression thresholds above and below CF were usually lower than the corresponding discharge rate thresholds. However, at all frequencies studied (including CF), suppression thresholds were higher than the corresponding thresholds for discharge synchronization. Across fibers, rates of suppression growth for suppressors at CF were greatest in low-CF fibers and least in high-CF fibers, and there was a systematic decrease in suppression growth rate at CF as CF increased. Within fibers, rates of suppression growth above CF were typically less than at CF, and slopes were monotonically decreasing functions of frequency. Within-fiber rates of suppression growth below CF were variable, but they usually were greater than rates of growth at CF. Iso-suppression contours (frequencies and intensities producing criterion amounts of suppression) indicated that tones near CF are the most potent suppressors at near-threshold intensities, and that the frequency producing the most suppression usually shifts downward as the amount of suppression increases. These data support the notion that synchrony suppression arises primarily as a passive consequence of hair cell activation.  相似文献   

18.
The effects of broadband noise (BBN) on the tone-evoked de receptor potential from inner hair cells of guinea pigs were measured. The effects of the noise were: suppression of the receptor potential, no net change, or greater depolarization relative to the tone alone, evoked receptor potential. The effects appear to be consistent with a two-tone suppression hypothesis. The time course of the suppression effect is immediate and constant in time. This observation suggests no obvious involvement of a local feedback loop in outer hair cells or one depending on the efferent nerves. Inner hair cell "sensitivity" is a variable in the magnitude of the suppression. Comparison of masked, tone-evoked de receptor potential intensity functions to responses from auditory-nerve fibers (taken from the literature for experiments using a similar paradigm) differentiates the phenomena of suppression and adaptation in the auditory periphery.  相似文献   

19.
The experiments reported employed nonspeech analogs of speech stimuli to examine the perceptual interaction between first-formant onset frequency and voice-onset time, acoustic cues to the voicing distinction in English initial stop consonants. The nonspeech stimuli comprised two pure tones varying in relative onset time, and listeners were asked to judge the simultaneity of tone onsets. These judgments were affected by the frequency of the lower tone in a manner that parallels the influence of first-formant onset frequency on voicing judgments. This effect was shown to occur regardless of prior learning and to be systematic over a wide range of lower tone frequencies including frequencies beyond the range of possible first-formant frequencies of speech, suggesting that the effect in speech is not attributable to (tacit) knowledge of production constraints, as some current theories suggest.  相似文献   

20.
An intermittent tone in one ear may induce a large decline in the loudness of a continuous tone in the contralateral ear [Botte et al., J. Acoust. Soc. Am. 72, 727-739 (1982)]. To uncover the basis for this induced loudness adaptation, the method of successive magnitude estimations was used to measure the loudness of a test tone in one ear during and after a single presentation of a brief inducer tone in the contralateral ear. Duration and frequency of the inducer were varied. The frequency of the test tone was set at 500, 1000, or 3000 Hz. Both inducer and test tones were at 60 dB SPL. When the inducer lasted 5 s or more and was at the same frequency as the test tone, the loudness of the test tone was reduced by 80% to 100% while the inducer was on. As the inducer frequency moved away from the test tone, the loudness reduction declined gradually except for a more marked drop at the point where the frequency separation exceeded the critical bandwidth. Loudness remained depressed after the inducer went off. Additional measurements showed that the amount of loudness reduction corresponded closely to the measured movement of the inducer's sound image away from the center of the listener's head (decentralization).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号