首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 289 毫秒
1.
Thompson RS  Aldis GK 《Ultrasonics》2002,40(1-8):835-841
Range gated pulsed Doppler can be used to make localized velocity measurements within a blood vessel. Both the transducer and the sample volume are of finite size, and this prohibits the measurement of velocity at a point. A spectral flow profile can be created by stepping a sufficiently small sample volume across the lumen of a vessel. However no such set of spectra will correspond directly to the true velocity profile. In this study we developed a systematic theoretical treatment which allows Doppler spectral power density (SPD) functions to be calculated under a very wide range of conditions. Simulated flow spectra were created from sets of these spectra. The model is based on the beam intensity weighted volume method and incorporates, through the idea of a spread function, Guidi's individual flow line spectrum. Our method can be applied for different spread functions; with beam profiles which are uniform, Gaussian or arbitrarily narrow (needle beam); with range gated sample volumes which can be maximal (CW-type) or minimal (PW-type); and for beams which intersect the flow tube axis, or are off centre. Under all conditions we find the spread function parameter k, equal to the ratio of the central Doppler shift to half the bandwidth, plays a key role. After formulating the model analytically, we sought simplifications to allow results to be obtained from simple, practical formulae. Spread and unspread SPD functions are in most cases given as single integrals which contain measurable physical parameters and can be easily evaluated numerically. Model results are presented for flow spectra of parabolic flow, illustrating the interplay between different factors in determining the appearance of spectral flow profiles.  相似文献   

2.
纳米流体运动特性和颗粒参数的测量对纳米流体换热效率的研究具有重要意义。本文将激光自混频技术应用于纳米流体测量中,给出了自混频信号功率谱密度函数的表达式并实验研究其变化规律。研究结果表明,功率谱密度展宽具有佛克脱函数的形式。激光垂直入射流动样品池时,功率谱密度得到展宽,展宽程度随着定向流速的增大或束腰半径的减小而增大。激光倾斜入射流动样品池时,功率谱密度在展宽的同时还伴随多普勒峰移,其位置随着定向流速的增大或散射矢量与定向流速之夹角的减小而迁移至高频。  相似文献   

3.
本文报道了一个简化的利用可见光和红外光带宽来计算和频光谱分辨率的公式. 公式显示和频振动光谱的Voigt线宽可以通过振动模式的均匀线宽(洛伦兹线宽)、非均匀线宽(高斯线宽)、红外光与可见光的高斯线宽计算获得. 利用本实验室新搭建的频率分辨及偏振分辨的皮秒和频光谱系统验证了该公式的准确性. 实验结果显示,本激光系统获取的红外光的高斯线宽为1.5 cm-1. 本激光系统的光谱分辨率约为4.6 cm-1,结果与胆固醇单层膜光谱获取的光谱分辨率(3.5~5 cm-1)基本一致.  相似文献   

4.
With a pulsed Doppler system, the recorded Doppler spectrum is expected to vary depending upon the sample volume size relative to the diameter of the vessel, the position of the sample volume in the vessel and the velocity profile. In the in vitro experiments described in this paper, the velocity profile was kept constant by using steady parabolic flow in a flow model. As the Doppler sample volume size and position were changed, the maximum variations of quantitative measurements from the Doppler spectrum were determined. The maximum, mean and mode frequencies and spectral broadening index (SBI) were affected by the position of the sample volume but to a lesser degree by its length (1.5-5.0 mm) relative to the 9.5 mm beam path length across the tube. When the centre of the Doppler sample volume was moved within the central 25% of the tube, the maximum variations were as follows: maximum frequency 3-5%, mean frequency 8-9%, mode frequency 8-9% and SBI 16-18%, where the range indicates the effect of increasing the sample volume size. Based on these results obtained under steady flow conditions in vitro, it is concluded that quantification of pulsed Doppler spectra may be feasible if the sample volume is positioned within the central 25% of the vessel.  相似文献   

5.
光谱法测量等离子体离子温度和旋转速度   总被引:7,自引:4,他引:3  
徐伟  万宝年 《光学学报》2003,23(9):115-1118
分析多普勒展宽和多普勒频移的区别,讨论了弦积分的线形分布和高斯分布的差异,利用光谱多道分析仪测量了碳227.1nm谱线的线形分布,通过选点拟合得出辐射粒子的离子温度和旋转速度径向分布。  相似文献   

6.
分析了多普勒展宽和多普勒频移区别,讨论了高斯拟合和弦积分线形分布的差异。利用多道光学分析仪(OSMA)测量HT-6M托卡马克限制器前Hα线形分布,通过高斯拟合由多普勒展宽和多普勒频移分别得出等离子温度和粒子入射速度。  相似文献   

7.
基于广义惠更斯-菲涅耳原理,推导出啁啾脉冲高斯光束在湍流大气中传输的光谱解析表达式,并对解析表达式进行了数值仿真。结果表明:啁啾参数越大,光源谱宽越宽;当光源相对谱宽大于0.336时,轴上点光谱产生蓝移;湍流使得轴上点光谱的相对频移量减小,相对频移量随源光谱宽的增大而非线性增大;增大光束束腰半径可减小湍流对光谱频移、光束展宽的影响。  相似文献   

8.
This will be a discussion of the non-invasive determination of the viscosity of a non-Newtonian fluid in laminar pipe flow over the range of shear rates present in the pipe. The procedure used requires knowledge of the flow profile in and the pressure drop along a long straight run of pipe. The profile is determined by using a pulsed ultrasonic Doppler velocimeter. This approach is ideal for making non-invasive, real-time measurements for monitoring and control. Rheograms of a shear thinning gel will be presented. The operating parameters and limitations of the Doppler-based instrument will be discussed. The most significant limitation is velocity gradient broadening of the Doppler spectra near the walls of the pipe. This limitation can be significant for strongly shear thinning fluids (depending also on the ratio of beam to pipe diameter and the transducer's insertion angle).  相似文献   

9.
Bastos CA  Fish PJ  Steel R  Vaz F 《Ultrasonics》2000,37(9):623-632
A closed-form expression for the Doppler power spectrum due solely to the range of blood velocities passing through a Gaussian sample volume placed anywhere in a vessel under conditions of axisymmetric flow, uniform backscatter and negligible intrinsic spectral broadening has been derived. The formulation presented here allows the independent specification of the sample volume position and width, in the three dimensions, and enables simple estimations of spectral shape for pulsed wave Doppler systems. Simpler expressions were derived for the cases of symmetric sample volume projections onto the vessel cross-section and/or sample volumes centred in the vessel. Closed form expressions were derived for mean frequency and spectral width in the case of a symmetric sample volume projection centred in the vessel. The effects of sample volume size and position on the Doppler spectral width and mean frequency are shown for a range of velocity profiles.  相似文献   

10.
11.
The investigation of tests of quantum electrodynamics in the X‐ray regime down to 2–20 parts per million (ppm) amplifies the need for improved characterisation of asymmetric reference sources and energies in this regime. While several transition metal characteristic energies have been defined, most are not referenced to accurate profiles or robust links to the metre via X‐ray optical interferometry. Lower intensity Kβ transitions have relatively poor accuracy – we ask how to determine Kβ transitions to an accuracy approaching those of Kα transitions. Instrumental broadening normally encountered in X‐ray experiments shifts the features of profiles used for calibration, such as peak energy, by a significant amount many times the quoted accuracies. We present a study of a methodology used recently to determine energies and profiles experimentally down to 4.5 and 2.7 ppm for Ti and V Kβ. In this study, we investigate the robustness of the methodology for a difficult data set and demonstrate that the approaches to and characterisation of the chromium Kβ spectral profile are consistent with accurate measurements in the literature down to 24 ppm. The peak energy of the chromium Kβ spectral profile is found to be 5946.68(14) eV prior to instrumental broadening. Characterisation of the spectral profile of the radiation, including the instrumental broadening, allows us to obtain an accurate and notably transferable standard. Significantly, we present a widely applicable methodology for achieving and using this standard. This approach has been used down to an accuracy of 2–5 ppm.  相似文献   

12.
Emission spectra of quantum dot arrays in zero-dimensional microcavities are studied theoretically. It is shown that their form is determined by the competition between collective superradiant mode formation and inhomogeneous broadening. A random sources method is used to calculate the photoluminescence spectra from an nonresonant pumped microcavity, and a standard diagram technique is used to provide a microscopic justification for the random sources method. The emission spectra of a microcavity are analyzed taking into account the spread of exciton energy due to inhomogeneous distribution of quantum dots and tunneling between them. It is demonstrated that the luminescence spectra of strongly tunnel-coupled quantum dots are sensitive to the dot positions, and the collective mode can (under certain conditions) be stabilized by random tunneling links.  相似文献   

13.
Laser array beam propagating through mouse liver tissue is investigated. The turbulence power spectrum of the liver tissue is employed in the extended Huygens–Fresnel method to obtain an optical intensity profile and beam broadening at the observation point in biological liver tissue. Variations of the beam profile and the beam broadening are simulated based on the number of beamlets, source size, wavelength and the ring radius of the array. A biological tissue, illuminated by the laser array beam, exhibits different beam profiles and beam spot radius variations when the number of beamlets, source size, wavelength and the ring radius of the laser array beam are varied. Examining these variations observed in the propagated optical beam and comparing them with the test cases, abnormalities such as cancer and tumor in a biological liver tissue can be diagnosed.  相似文献   

14.
Nanostructures in the form of nanowires or filled nanotubes and nanoparticles covered by shells are of great interest in materials science. They allow the creation of new materials with tailored new properties. For the characterisation of these structures and their shells by means of analytical transmission electron microscopy (TEM), especially by energy dispersive X-ray spectroscopy (EDXS), and electron energy loss spectroscopy (EELS), the accurate analysis of linescan intensity profiles is necessary. A mathematical model is described, which is suitable for this analysis. It considers the finite electron beam size, the beam convergence, and the beam broadening within the specimen. It is shown that the beam size influences the measured result of core radius and shell thickness. On the other hand, the influence of the beam broadening within the specimen is negligible. At EELS, the specimen thickness must be smaller than the mean free path for inelastic scattering. Otherwise, artifacts of the signal profile of a nanowire can pretend a nanotube.  相似文献   

15.
Since the introduction of heterodyne methods for synchrotron radiation (Cousesement et al. in Phys. Rev. B 54:16003, 1996; Callens et al. in Phys. Rev. 67:104423, 2003) one observes interferences between two scattering amplitudes; the scattering amplitude of resonant nuclei in a reference sample and the scattering amplitude of nuclei in the sample under investigation. Theses interferences can easily been observed as resonances in velocity spectra when one uses a time integrated method. They can also been observed as quantum beats, when one would use the time differential method. For both methods it is important that one uses a reference sample and therefore both methods disserved the name “heterodyne methods.” As theses interferences are a product of two scattering amplitudes, the amplitude of a wave scattered form the investigated sample can be known with its phase. But it is assumed that the reference wave is known in advance by a proper choice of the reference sample. At first sight it is very likely that multiple scattering would add more complexity but in this paper it is claimed that on the contrary it provide a bonus, especially for single crystals. It provokes only a line broadening and a line shift of the resonances in the velocity spectra (or a change in the damping and frequency of the quantum beats when the time spectra are registered). Moreover these changes in the line shapes can easily be measured and they provide all the information needed to reconstruct a 3-D picture of the atomic arrangement of resonant nuclei and moreover they distinguish between different hyperfine sites. The method may be more practical for measurements on synchrotron radiation but it does also apply to velocity spectra obtained from resonant scattering with strong sources. The use of radioactive sources suffer from the disadvantage of poorer statistics or much longer accumulation times but they enjoy the advantage to be table-top and at-home experiments. As strong sources are now commercially available this possibility to measure not only the hyperfine fields but also the corresponding crystal structure could give a renewed impetus to the investigations with Moessbauer spectrometry, with “at home and table top” instrumentation.  相似文献   

16.
We derive the spectral line shape for collinear fast beam laser spectroscopy. As initial condition we take a thermally distributed ensemble into account. While the thermal velocity distribution of the fast ensemble has an asymmetric structure due to the acceleration by the electrostatic field, under typical experimental conditions the convolution with the natural line shape preserves the Lorentz profile with negligible broadening. However, the spectral line as a whole experiences a small shift depending on the temperature of the source and the acceleration . PACS 32.70.Jz  相似文献   

17.
仪器展宽对大气压等离子体电子密度测量的影响   总被引:2,自引:0,他引:2  
实验使用两台不同的单色仪,采用光谱线型法测量了大气压氩气介质阻挡放电中的电子密度.诊断结果表明,由于不同的单色仪其仪器加宽不同,仪器加宽对总的光谱线型有较大影响.通过考虑等离子体中的各种加宽机制,采用卷积和反卷积的方法对氩原子发射谱线线型进行了分析,从整个光谱线型中分离出Stark线型,排除了仪器加宽对最终诊断结果的影响.从而最终测量了大气压氩气介质阻挡放电中的电子密度.测量得到在大气压氩气介质阻挡放电中单个放电丝存在时,电子温度为10000K时,电子密度约为3.05-3.26×1021 m-3.此方法不仅可以应用在大气压介质阻挡放电中,还可以用于测量其它大气压等离子体电子密度.  相似文献   

18.
The study of arterial mechanics concerns functional characteristics depending on wall elasticity and flow profile. Wall elasticity can be investigated through the estimation of parameters like the arterial distensibility, which is of high clinical interest because of its known correlation not only with the advanced atherosclerotic disease, but also with aging and major risk factors for cardiovascular disease. The flow velocity profile is also clinically relevant, because it modulates endothelial function and can be responsible for the development and distribution of atherosclerotic plaques. A clinically relevant variable extracted from the blood velocity profile is the wall shear rate (WSR), which represents the spatial velocity gradient near the vessel wall. This paper describes an integrated ultrasound system, capable of detecting both the velocity profile and the wall movements in human arteries. It basically consists of a PC add-on board including a single high-speed digital signal processor. This is dedicated to the analysis of echo-signals backscattered from 128 range cells located along the axis of the interrogating ultrasound (US) beam. Echoes generated from the walls (characterized by high amplitudes and low Doppler frequencies) and from red blood cells (characterized by low amplitudes and relatively high Doppler frequencies) are independently processed in real-time. Wall velocity is detected through the autocorrelation algorithm, while blood velocity is investigated through a complete spectral analysis of all signals backscattered by erythrocytes and WSR is extracted from the estimated velocity profile. Preliminary applications of the new system, including the simultaneous analysis of blood flow and arterial wall movement in healthy volunteers and in a diseased patient, are discussed, and first results are presented.  相似文献   

19.
The (spectral) brightness for partially transverse coherent sources such as synchrotron radiation and free‐electron laser sources can be defined as the maximum of the Wigner distribution. Then, the brightness includes information on both coherence and wavefront characteristics of the radiation field. For undulator sources, it is customary to approximate the single‐electron electric field at resonance with a Gaussian beam, leading to great simplifications. Attempts to account for the modified spatial and angular profile of the undulator radiation in the presence of detuning due to energy spread, currently build on the simplified brightness expression derived under the assumption of Gaussian beams. The influence of energy spread on undulator radiation properties is becoming important in view of diffraction‐limited rings with ultralow emittance coming on‐line. Here the effects of energy spread on the brightness of undulator radiation at resonance are discussed, as well as relevant relations with coherence properties.  相似文献   

20.
High-resolution absorption lineshapes for the P(3) and P(6) transitions of the first overtone (v = 2-0) band of HF at 296 K have been measured using a pair of distributed feedback diode lasers operating near 1.31 and 1.34 μm, respectively. Spectral line intensities and self-broadening parameters were determined by fitting the measured spectra with Voigt, Galatry, and Rautian lineshape models. Voigt profiles fit the low-pressure (<10 Torr) spectra of the P(3) transition reasonably well due to the relatively strong collisional broadening effect. Lineshape measurements of the P(6) transition (for pressures ranging from 5 to 60 Torr) show significant variation from the Voigt lineshape model due to velocity-changing collisions that effectively reduce the Doppler component of the spectral line. Lineshape models that include motional (Dicke) narrowing effects, Galatry (soft collision) and Rautian (hard collision) profiles yield significant improvements in the spectral lineshape fits compared with Voigt profiles. The collisional broadening coefficient (gamma) of the P(6) transition obtained from a Voigt fit is approximately 4% lower than those found with either Galatry or Rautian profile fits. The measured intensities and self-broadening coefficients are compared with values in the HITRAN database and previous measurements. Copyright 1999 Academic Press.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号