首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
The radiation of microwave sources above sunspots at a frequency of 17 GHz gives information about the parameters of solar plasma in the regions where the magneti-field strength is B ~ 2000 G in the transition region between the chromosphere and corona. Short-period oscillations (with a period of several minutes) of microwave emission from solar active regions (ARs) reflect wave processes in magnetic flux tubes of sunspots. Short-period oscillations of microwave emission from AR NOAA 12242 before two flares on December 17, 2014 are analyzed. This analysis is based on solar radio images obtained by means of the Nobeyama Radio Heliograph with a 10″?15″ two-dimensional spatial resolution. The radio maps of the whole solar disk were synthesized in a nonstandard mode with a cadence of 10 s and an averaging time of 10 s. An increase in the power of about ten-minute oscillations of microwave radiation approximately 40 to 50 min before the M1.5 flare (01: 00 UT) is found. On the same day, an increase in the power of ten-minute oscillations is observed about 60 min before the M8.7 flare (04: 42 UT). This effect is similar to the effect found earlier by two groups of authors independently for three-minute oscillations—namely, they observed a sharp increase in three-minute oscillations 15 to 20 min before the radio burst accompanying the flare. The effect in question may be interpreted as an relationship ofMHD waves propagating along the magnetic flux tube of a sunspot and the onset of the solar flare.  相似文献   

2.
round-the-clock solar observations with full-disk coverage of vector magnetograms and multi-wavelength images demonstrate that solar active regions(ARs) are ultimately connected with magnetic field. Often two or more ARs are clustered, creating a favorable magnetic environment for the onset of coronal mass ejections(CMEs). In this work, we describe a new type of magnetic complex: cluster of solar ARs. An AR cluster is referred to as the close connection of two or more ARs which are located in nearly the same latitude and a narrow span of longitude. We illustrate three examples of AR clusters, each of which has two ARs connected and formed a common dome of magnetic flux system. They are clusters of NOAA(i.e., National Oceanic and Atmospheric Administration) ARs 11226 11227, 11429 11430, and 11525 11524. In these AR clusters, CME initiations were often tied to the instability of the magnetic structures connecting two partner ARs, in the form of inter-connecting loops and/or channeling filaments between the two ARs. We show the evidence that, at least, some of the flare/CMEs in an AR cluster are not a phenomenon of a single AR, but the result of magnetic interaction in the whole AR cluster. The observations shed new light on understanding the mechanism(s) of solar activity. Instead of the simple bipolar topology as suggested by the so-called standard flare model, a multi-bipolar magnetic topology is more common to host the violent solar activity in solar atmosphere.  相似文献   

3.
In the paper, the influences of water flux on both discharge current and onset voltage were studied. Both charging and capturing particles of atomizing corona discharges were investigated when the magnetic field was used or not. The charge number of droplets and their sizes were calculated after some parameters were measured by Millikan oil drop instrument. In addition, the capturing ability of atomizing corona discharge pre-charger with magnetic field was compared with the traditional pre-charger. Eventually, the charging mechanism of atomizing corona discharge with magnetic field was analyzed through the above-mentioned experimentation and comparison. The result shows that the smallest onset voltage will appear with water flow increase in the atomizing corona discharge, and that the ion concentration between electrodes is the highest in the atomizing corona discharge charger with magnetic field than any other pre-charger, which is conducive for charging dust particles. Hence the new pre-charging technique is promising for capturing fine aerosol particles in electrostatic precipitators.  相似文献   

4.
张枚 《物理》2006,35(11):927-931
太阳是离地球最近的一颗恒星,太阳日冕物质抛射是太阳大气中最剧烈的一种活动现象.当日冕物质抛射爆发时,大量的等离子体物质从接近太阳日面的低日冕被抛出,瞬时释放出巨大的能量.当一部分这些物质和能量传播到地球附近时,可以造成短波通讯中断、卫星工作失常等破坏性现象.文章作者认为,是缠绕的太阳磁场提供了足够的能量,使这些日冕物质可以克服恒星的重力以及周边磁场的束缚抛射出来;而磁螺度在日冕中的不断积累,不仅为日冕物质抛射提供了能量基础,而且使爆发在一定程度上成为一种日冕演化的必然。  相似文献   

5.
We show experimentally for the first time that two mutually attracting flux ropes may bounce back instead of merging together, leading to a variety of dynamics not expected from a two-dimensional model. Attraction forces due to flux rope currents compete with repulsion from field line bending of in-plane and out-of-plane magnetic fields and elastic plasma compression. Bouncing dynamics occurs if the line-bending force due to an out-of-plane field dominates. Otherwise, the ropes merge. Further reduction in the field line-bending force results in violently erratic magnetic states.  相似文献   

6.
为研究通道内空气热磁对流的流动规律,用数值模拟方法,研究了磁场作用下二维模型水平通道内的流动换热过程,获得了通道内的磁通密度分布和空气温度轴向分布,在此基础上,建立了一维通道内空气热磁对流的数学模型,就温度场和磁场的相对关系对水通道内热磁对流过程的影响进行了数值计算,获得了通道内不同温度场、磁场以及其不同相对位置下的通道空气流量,并讨论了磁极形状对空气流量及其变化的影响。  相似文献   

7.
The effect of the corona wind on the natural convection at a rectangular channel was investigated experimentally. The results indicate that the natural convection in the absence of electric/corona wind at obtuse angles outperforms than acute angles and keeps improving by increasing the angle. However, the efficiency of the electric/corona wind at acute angles is higher than obtuse angles. Generally, in the presence of electric/corona wind, heat transfer coefficient was increased. The effect of the electric/corona wind was decreased by raising heat flux. This mainly stems from the fact that the temperature gradient raises the thermal boundary layer and reduces the secondary flow power. Eventually, empirical correlation for the estimation of Nusselt number was achieved.  相似文献   

8.
The Sun's activity drives the variability of geospace (i.e., near-Earth environment). Observations show that the ejection of plasma from the Sun, called coronal mass ejections (CMEs), are the major cause of geomagnetic storms. This global-scale solar dynamical feature of coronal mass ejection was discovered almost three decades ago by the use of space-borne coronagraphs (OSO-7, Skylab/ATM and P78-1). Significant progress has been made in understanding the physical nature of the CMEs. Observations show that these global-scale CMEs have size in the order of a solar radius (~6.7×105 km) near the Sun, and each event involves a mass of about 1015 g and an energy comparable to that of a large flare on the order of 1032 ergs. The radial propagation speeds of CMEs have a wide range from tens to thousands of kilometers per second. Thus, the transit time to near Earth's environment [i.e., 1 AU (astronomical unit)] can be as fast as 40 hours to 100 hours. The typical transit time for geoeffective events is ~60-80 h. This paper consists of two parts: 1) A summary of the observed CMEs from Skylab to the present SOHO will be presented. Special attention will be made to SOHO/LASCO/EIT observations and their characteristics leading to a geoeffective CME. 2) The chronological development of theory and models to interpret the physical nature of this fascinating phenomenon will be reviewed. Finally, an example will be presented to illustrate the geoeffectiveness of the CMEs by using both observation and model  相似文献   

9.
In this review many of the well known tools for the analysis of Complex systems are used in order to study the global coupling of the turbulent convection zone with the solar atmosphere where the magnetic energy is dissipated explosively. Several well documented observations are not easy to interpret with the use of Magnetohydrodynamic (MHD) and/or Kinetic numerical codes. Such observations are: (1) The size distribution of the Active Regions (AR) on the solar surface, (2) The fractal and multi fractal characteristics of the observed magnetograms, (3) The Self-Organised characteristics of the explosive magnetic energy release and (4) the very efficient acceleration of particles during the flaring periods in the solar corona. We review briefly the work published the last twenty five years on the above issues and propose solutions by using methods borrowed from the analysis of complex systems. The scenario which emerged is as follows: (a) The fully developed turbulence in the convection zone generates and transports magnetic flux tubes to the solar surface. Using probabilistic percolation models we were able to reproduce the size distribution and the fractal properties of the emerged and randomly moving magnetic flux tubes. (b) Using a Non Linear Force Free (NLFF) magnetic extrapolation numerical code we can explore how the emerged magnetic flux tubes interact nonlinearly and form thin and Unstable Current Sheets (UCS) inside the coronal part of the AR. (c) The fragmentation of the UCS and the redistribution of the magnetic field locally, when the local current exceeds a Critical threshold, is a key process which drives avalanches and forms coherent structures. This local reorganization of the magnetic field enhances the energy dissipation and influences the global evolution of the complex magnetic topology. Using a Cellular Automaton and following the simple rules of Self Organized Criticality (SOC), we were able to reproduce the statistical characteristics of the observed time series of the explosive events, (d) finally, when the AR reaches the turbulently reconnecting state (in the language of the SOC theory this is called SOC state) it is densely populated by UCS which can act as local scatterers (replacing the magnetic clouds in the Fermi scenario) and enhance dramatically the heating and acceleration of charged particles.  相似文献   

10.
Features of propagation of relativistic solar cosmic rays in magnetic clouds have been considered on the basis of model calculations. Magnetic clouds have a structure of magnetic flux ropes and are extended from the Sun to the Earth via coronal mass ejections. Features of propagation of particles of different energies in a magnetic cloud are discussed. The propagation of high-energy solar protons in the loop-like structure of the interplanetary magnetic field in the event of October 28, 2003 is analyzed.  相似文献   

11.
We present and illustrate a concept that involves two basic statements: (a) solar pulse flares and coronal mass ejections (CME) are physically similar, but, generally speaking, independent phenomena, which can occur both individually and jointly, initiating each other in different cause and- effect combinations; (b) in the analysis of the relationship between the flares and CMEs one must take into account that the latter result in significant post-eruption flare-like energy release in the corona, which can be accompanied by many important phenomena including the prolonged acceleration of particles.  相似文献   

12.
Simultaneous observations of the solar atmosphere from its surface to the corona obtained with the Solar and Heliospheric Observatory (SOHO) and Transition Region and Coronal Explorer (TRACE) show a ubiquitous sequence of events that start from cancellation of photospheric magnetic fields, pass through shock formation, and result in transition region supersonic jets and microflares. These results support a novel view of the energy buildup in the solar atmosphere associated with a cascade of shock waves produced by interacting network magnetic elements in the photosphere and provide insight into the origin of the solar transition region. The findings account for the general mechanisms of energy production, transfer, and release throughout the Sun's and stellar atmospheres.  相似文献   

13.
It is shown by using a two-dimensional fully relativistic electromagnetic particle-in-cell code that the tearing instability in a current sheet of pair plasmas is caused by Landau resonances of both electrons and positrons. Strong magnetic flux can be generated during coalescence of magnetic islands in the nonlinear phase of the tearing instability. The magnetic flux produced in an O-type magnetic island is caused by the counterstreaming instability found by Kazimura et al. [Astrophys. J. Lett. 498, L183 (1998); J. Phys. Soc. Jpn. 67, 1079 (1998)]. It is also shown that charge separation with a quadrupole-like structure is generated from the localized strong magnetic flux. During the decay of the quadrupole-like charge structure as well as the magnetic flux, there appear wave emissions with high-frequency electromagnetic waves and Alfvén waves as well as Langmuir waves.  相似文献   

14.
By data of the 23rd solar cycle, it is shown that close statistical relations exist between quantitative parameters of dimmings and arcades caused by solar coronal mass ejections (CMEs), on the one hand, and magnitudes of non-recurrent Forbush-decreases of the galactic cosmic ray flux, as well as the propagation time of disturbances from the Sun to the Earth, on the other hand. Parameters of dimmings and arcades, in particular their summarized magnetic flux of the prolonged field at the photospheric level, were calculated by data of the EUV SOHO/EIT telescope in the 195 Å Received results mean that the scale, characteristics, and propagation time of interplanetary disturbances to the Earth are determined to a large degree by measurable parameters of solar eruptions and may be estimated in advance by observations of dimmings and arcades in the EUV range.  相似文献   

15.
Coronal mass ejections (CMEs) are an important element of coronal and interplanetary dynamics. They can inject large amounts of mass and magnetic fields into the heliosphere, causing major geomagnetic storms and interplanetary shocks, which are a key source of solar energetic particles (E>1 MeV). Until recently, our understanding of the origins and early development of CMEs at the Sun was very limited. We knew that CMEs were frequently associated with erupting prominences and long-enduring X-ray arcades, but our physical understanding of how and why CMEs are initiated was poor. However, recent studies using the excellent data sets from the Yohkoh, SOHO, Wind, ACE and other spacecraft and ground-based instruments have improved our knowledge of the mass ejection process and how it effects space weather. The author reviews some of the well-determined coronal properties of CMEs, what is known about their source regions, and what their manifestations are in the solar wind. One exciting new type of observation is of halo-like CMEs, which suggest the launch of a geoeffective disturbance toward Earth. Several studies have shown a good correspondence between halo CMEs accompanied by near-sun center surface activity and subsequent magnetic clouds and geomagnetic storms at earth. In addition, halo CMEs are important for understanding the internal structure of CMEs since their source regions are near Sun center and near-earth spacecraft may be likely to sample material along their central axes  相似文献   

16.
自然对流是由非保守体积力驱动的流体流动,这种体积力可以是重力、离心力以及电磁场力等;通过外加梯度磁场来影响流体的流动,产生强化换热效果的方法是一种新型的强化技术.本文利用永磁体产生0.3 g左右的加速度,采用马赫干涉仪对封闭方腔内空气的热磁对流的强化换热现象进行了实验研究,得到了温度场的干涉图像,并与理论模拟结果进行了比较,发现磁场对空气的自然对流换热有一定的强化作用.  相似文献   

17.
Mingjun Li  Takuya Tamura 《哲学杂志》2019,99(18):2221-2235
In this study, we solidified an immiscible pseudo-binary (Fe–C)–50mass%Cu alloy in a static magnetic field and observed macro morphologies as a function of the magnetic flux density. The experimental result shows that the Fe-rich phase exhibits a single bulk when the alloy is solidified at a low magnetic flux density, while it is separated in to two smaller bulks at high magnetic flux densities and the distance between the bulks becomes larger with the increase of the magnetic flux density. The possible reason for the separation of the Fe-rich phase was simply proposed. As far as the migration of separated Fe-rich phase bulks is concerned, the thermoelectric effect between the Fe-rich and Cu-rich metals was considered, from which the thermoelectric body force could be exerted upon the Fe-rich droplets. The higher the body force is produced, the larger the distance will be covered due to the migration of the droplets. Further analysis reveals that the convection attributed to the thermoelectric effect may contribute to the migration of the Fe-rich droplets at a low magnetic field and become negligible at high magnetic flux densities.  相似文献   

18.
In this paper, experimental investigations of the discharge characteristics of magnetically enhanced corona discharges, for the purpose of capturing fine aerosol particles, are presented. The discharge mechanism during such a process is analyzed as well. The effects of magnetic enhancement under different magnet flux densities, and in positive- or negative-corona discharges, were experimentally compared. The magnetically enhanced effects in different inter-electrode regions were studied. Experimental results demonstrated that the magnetic field could efficiently increase the concentrations of both the negative ions and the free electrons during negative-corona discharge. The dominant mechanism of magnetic enhancement in a corona discharge involves the Larmor precessions of free electrons which enhance ionization of the gas molecules near the discharge electrode. A convenient configuration for enhancing corona discharge was formed by placing permanent magnets with a local strong magnetic field near the discharge electrode. A magnetically enhanced negative-corona (MNC) pre-charger was assembled in front of an electrostatic enhancement filter. The influence of the MNC pre-charger on the efficiencies of an electrostatic enhancement filter was measured and compared with that of a conventional corona pre-charger. The free-electron-charging mechanism of the MNC pre-charger was preliminarily analyzed. Our results show that the new pre-charging technique is promising for capturing fine aerosol particles in electrostatic enhancement filters or electrostatic precipitators.  相似文献   

19.
Electron transport properties of a triple-terminal Aharonov-Bohm interferometer are theoretically studied. By applying a Rashba spin-orbit coupling to a quantum dot locally, we find that remarkable spin polarization comes about in the electron transport process with tuning the structure parameters, i.e., the magnetic flux or quantum dot levels. When the quantum dot levels are aligned with the Fermi level, there only appear spin polarization in this structure by the presence of an appropriate magnetic flux. However,in absence of magnetic flux spin polarization and spin separation can be simultaneously realized with the adjustment of quantum dot levels, namely, an incident electron from one terminal can select a specific terminal to depart from the quantum dots according to its spin state.  相似文献   

20.
A kinematical model is necessary for understanding the gross structure of the coronal magnetic field and its slow evolution in consistency with the small scale structure of the photospheric fields. Here we have developed a preliminary phenomenological model in terms of flux tubes of flux amounts ≈ 1017 − 1018.5 Mx rising across the inner corona in the form of arches and opening out in the outer corona. In contrast to Parker’s estimate, this model is consistent with the observed spans of the chromospheric fibrils and x-ray arches. It is also consistent with the number of flux tubes present above the photosphere as estimated from the observed abundance of spicules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号