首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We propose a unified phenomenological theory to investigate the interaction between arbitrarily moving superconductors and gravitational fields including the Newtonian gravity, gravitational waves, vector transverse gravitoelectric fields, and vector gravitomagnetic fields. In the limit of weak field and low velocity, the expressions for the induced electromagnetic and gravitational fields in the interior of a moving superconductor are obtained. The Meissner effect, London moment, DeWitt effect, effects of gravitational wave on a superconductor, and induced electric fields in the interior of a freely vibrating superconductor are recovered from these two expressions. We demonstrate that the weak equivalence principle is valid in superconductivity, that Newtonian gravity and gravitational waves will penetrate either a moving superconductor or a superconductor at rest, and that a superconductor at rest cannot shield either vector gravitomagnetic fields or vector transverse gravitoelectric fields.  相似文献   

2.
WU Ning 《理论物理通讯》2006,45(3):452-456
Based on unified theory of electromagnetic interactions and gravitational interactions, the non-relativistic limit of the equation of motion of a charged Dirac particle in gravitational field is studied. From the Schrodinger equation obtained from this non-relativistic limit, we can see that the classical Newtonian gravitational potential appears as a part of the potential in the Schrodinger equation, which can explain the gravitational phase effects found in COW experiments.And because of this Newtonian gravitational potential, a quantum particle in the earth's gravitational field may form a gravitationally bound quantized state, which has already been detected in experiments. Three different kinds of phase effects related to gravitational interactions are studied in this paper, and these phase effects should be observable in some astrophysical processes. Besides, there exists direct coupling between gravitomagnetic field and quantum spin, and radiation caused by this coupling can be used to directly determine the gravitomagnetic field on the surface of a star.  相似文献   

3.
WU Ning 《理论物理通讯》2005,44(5):883-886
In quantum gauge theory of gravity, the gravitational field is represented by gravitational gauge field. The field strength of gravitational gauge field has both gravitoelectric component and gravitomagnetic component. In classical level, gauge theory of gravity gives classical Newtonian gravitational interactions in a relativistic form. Besides, it gives gravitational Lorentz force, which is the gravitational force on a moving object in gravitomagnetic field. The direction of gravitational Lorentz force is not the same as that of classical gravitational Newtonian force. Effects of gravitational Lorentz force should be detectable, and these effects can be used to discriminate gravitomagnetic field from ordinary electromagnetic magnetic field.  相似文献   

4.
In quantum gauge theory of gravity, the gravitational field is represented by gravitational gauge field.The field strength of gravitational gauge field has both gravitoelectric component and gravitomagnetic component. In classical level, gauge theory of gravity gives classical Newtonian gravitational interactions in a relativistic form. Besides,it gives gravitational Lorentz force, which is the gravitational force on a moving object in gravitomagnetic field The direction of gravitational Lorentz force is not the same as that of classical gravitational Newtonian force. Effects of gravitational Lorentz force should be detectable, and these effects can be used to discriminate gravitomagnetic field from ordinary electromagnetic magnetic field.  相似文献   

5.
The paper summarizes the most important effects in Einsteinian gravitomagnetic fields related to propagating light rays, moving clocks and atoms, orbiting objects, and precessing spins. Emphasis is put onto the gravitational interaction of spinning objects. The gravitomagnetic field lines of a rotating or spinning object are given in analytic form.  相似文献   

6.
Gravitomagnetic charge that can also be referred to as the dual mass or magnetic mass is the topological charge in gravity theory. A gravitomagnetic monopole at rest can produce a stationary gravitomagnetic field. Due to the topological nature of gravitomagnetic charge, the metric of spacetime where the gravitomagnetic matter is present will be nonanalytic. In this paper both the dual curvature tensors (which can characterize the dynamics of gravitational charge/monopoles) and the antisymmetric gravitational field equation of gravitomagnetic matter are presented. We consider and discuss the mathematical formulation and physical properties of the dual curvature tensors and scalar, antisymmetric source tensors, dual spin connection (including the low‐motion weak‐field approximation), dual vierbein field as well as dual current densities of gravitomagnetic charge. It is shown that the dynamics of gravitomagnetic charge can be founded within the framework of the above dual quantities. In addition, the duality relationship in the dynamical theories between the gravitomagnetic charge (dual mass) and the gravitoelectric charge (mass) is also taken into account in the present paper.  相似文献   

7.
WU Ning 《理论物理通讯》2004,41(4):567-572
In 1992, E.E. Podkletnov and R. Nieminen found that under certain conditions, ceramic superconductor with composite structure reveals weak shielding properties against gravitational force. In classical Newton's theory of gravity and even in Einstein's general theory of gravity, there are no grounds of gravitational shielding effects. But in quantum gauge theory of gravity, the gravitational shielding effects can be explained in a simple and natural way. In quantum gauge theory of gravity, gravitational gauge interactions of complex scalar field can be formulated based on gauge principle. After spontaneous symmetry breaking, if the vacuum of the complex scalar field is not stable and uniform, there will be a mass term of gravitational gauge field. When gravitational gauge field propagates in this unstable vacuum of the complex scalar field, it will decays exponentially, which is the nature of gravitational shielding effects. The mechanism of gravitational shielding effects is studied in this paper, and some main properties of gravitational shielding effects are discussed.  相似文献   

8.
In the framework of the weak stationary gravitational field and low velocity, we investigate the gravitomagnetic effects on a superconductor. We show that we have no gravitomagnetic shielding, and thus no generalized Meissner gravitational effect in superconductors.  相似文献   

9.
WU Ning 《理论物理通讯》2008,49(1):129-132
Based on the coupfing between the spin of a particle and gravitoelectromagnetic field, the equation of motion of a spinning test particle in gravitational field is deduced. From this equation of motion, it is found that the motion of a spinning particle deviates from the geodesic trajectory, and this deviation originates from the coupling between the spin of the particle and gravitoelectromagnetic field, which is also the origin of Lense-Thirring effects. In post-Newtonian approximations, this equation gives the same results as those of Mathisson-Papapetrou equation. Effect of the deviation of geodesic trajectory is detectable.  相似文献   

10.
The experimental basis of the equivalence principle is reviewed, and the implications for the gravitational interactions of elementary particles are studied within a special relativistic framework. The gravitational red shift is treated in detail and is used to show that antiparticles also obey the equivalence principle. The profound consequences of a violation of the equivalence principle are discussed.  相似文献   

11.
As is well known, the general theory of relativity (GTR) proceeds from the so-called equivalence principle according to which the dynamic effects of gravitation are identified with the kinematic effects of accelerated motion. In this theory, gravitation is associated with the Riemannian structure of the pseudo-Euclidean space-time (described by the metric tensor and the Riemannian connectivity and the curvature related with this tensor) specified in the four-dimensional space-time continuum. In the present work, it is first demonstrated that on the level of elementary particles (within the framework of the theory of quantized fields), the equivalence principle is violated. It is established that elementary particles with different masses (for example, electron and proton) move in the external gravitational field with different accelerations. In this connection, a new approach to the problem of gravitational interactions is suggested based on deformations of a latent dynamic system conditionally called ether that underlies elementary particle theory [2].  相似文献   

12.
We consider the motion of a spinning relativistic particle in external electromagnetic and gravitational fields to first order in the external field but to arbitrary order in the spin. The influence of the spin on the particle trajectory is properly accounted for by describing the spin noncovariantly. Specific calculations are performed through second order in the spin. A simple derivation is presented for the gravitational spin-orbit and spin-spin interactions of a relativistic particle. We discuss the gravimagnetic moment (GM), a particular spin effect in general relativity. We show that for a Kerr black hole the gravimagnetic ratio, i.e., the coefficient of the GM, equals unity (just as the gyromagnetic ratio equals 2 for a charged Kerr hole). The equations of motion obtained for a spinning relativistic particle in an external gravitational field differ substantially from the Papapetrou equations. Zh. éksp. Teor. Fiz. 113, 1537–1557 (May 1998)  相似文献   

13.
In previous work it has been shown that the electromagnetic quantum vacuum, or electromagnetic zero‐point field, makes a contribution to the inertial reaction force on an accelerated object. We show that the result for inertial mass can be extended to passive gravitational mass. As a consequence the weak equivalence principle, which equates inertial to passive gravitational mass, appears to be explainable. This in turn leads to a straightforward derivation of the classical Newtonian gravitational force. We call the inertia and gravitation connection with the vacuum fields the quantum vacuum inertia hypothesis . To date only the electromagnetic field has been considered. It remains to extend the hypothesis to the effects of the vacuum fields of the other interactions. We propose an idealized experiment involving a cavity resonator which, in principle, would test the hypothesis for the simple case in which only electromagnetic interactions are involved. This test also suggests a basis for the free parameter η(ν) which we have previously defined to parametrize the interaction between charge and the electromagnetic zero‐point field contributing to the inertial mass of a particle or object.  相似文献   

14.
As shown previously, quantum mechanics directly violates the weak equivalence principle in general, and thus indirectly violates the strong equivalence principle in all dimensions. The present paper shows that quantum mechanics also directly violates the strong equivalence principle unless it is arbitrarily abetted in hindsight. Vital domains are shown to exist in which quantum gravity would be non-applicable. There are classical subtleties in which the strong equivalence principle appears to be violated, but is not. Neutron free fall interference experiments in a gravitational field are examined, as is Galileo's falling body assertion and the misconception it leads to.  相似文献   

15.
In this paper we introduce gravitomagnetic field equations into the investigation of gravitomagnetic effects on a superconductor. We point out that in the absence of an applied magnetic field, an applied gravitomagnetic field will induce twin currents, gravitational and electric supercurrents. The latter will create a magnetic field. The slightly modified Josephson, London, and London-type gravitomagnetic equations are obtained. Some applications of these equations are discussed.  相似文献   

16.
The general relativistic kinetic theory including the effect of a stationary gravitational field is applied to the electromagnetic transport processes in conductors. Then it is applied to derive the general relativistic Ohm's law where the gravitomagnetic terms are incorporated. The total electric charge quantity and charge distribution inside conductors carrying conduction current in some relativistic cases are considered. The general relativistic Ohm's law is applied to predict new gravitomagnetic and gyroscopic effects which can, in principle, be used to detect the Lense-Thirring and rotational fields.  相似文献   

17.
Over the last 25 years the equivalence principle, in its strong form (see the text), has been rejected when the electromagnetic phenomena are taken into account, on the basis that a charge in a gravitational field experiences a self-interaction force, vanishing in an inertial field. As a consequence, the equivalence principle reduces to an essentially formal principle, with loss of physical content. Since the previous conclusion is not supported by a pertinent analysis of the order of the physical effects of the self-force, such an analysis is tried in this paper for a charge at rest or beginning a free fall in a Schwarzschild space-time. Disagreeing with the literature, the authors conclude that, in the validity domain of classical electrodynamics, no observable violation of the strong equivalence principle occurs because of the electrostatic self-force.  相似文献   

18.
A discussion of the fundamental interrelation of geometry and physical laws with Lie groups leads to a reformulation and heuristic modification of the principle of inertia and the principle of equivalence, which is based on the simple de Sitter group instead of the Poincaré group. The resulting law of motion allows a unified formulation for structureless and spinning test particles. A metrical theory of gravitation is constructed with the modified principle, which is structured after the geometry of the manifold of the de Sitter group. The theory is equivalent to a particular Kaluza-Klein theory in ten dimensions with the Lorentz group as gauge group. A restricted version of this theory excludes torsion. It is shown by a reformulation of the energy momentum complex that this version is equivalent to general relativity with a cosmologic term quadratic in the curvature tensor and in which the existence of spinning particle fields is inherent from first principles. The equations of the general theory with torsion are presented and it is shown in a special case how the boundary conditions for the torsion degree of freedom have to be chosen such as to treat orbital and spin angular momenta on an equal footing. The possibility of verification of the resulting anomalous spin-spin interaction is mentioned and a model imposed by the group topology ofSO(3,2) is outlined in which the unexplained discrepancy between the magnitude of the discrete valued coupling constants and the gravitational constant in Kaluza-Klein theories is resolved by the identification of identical fermions as one orbit. The mathematical structure can be adapted to larger groups to include other degrees of freedom.  相似文献   

19.
We address the old question of whether or not a uniformly accelerated charged particle radiates, and consequently, if weak equivalence principle is violated by electrodynamics. We show that radiation has different meanings; some absolute, some relative. Detecting photons or electromagnetic waves is not absolute, it depends both on the electromagnetic field and on the state of motion of the antenna. An antenna used by a Rindler observer does not detect any radiation from a uniformly accelerated co-moving charged particle. Therefore, a Rindler observer cannot decide whether or not he is in an accelerated lab or in a gravitational field. We also discuss the general case.  相似文献   

20.
It is shown that in a new nonmetrical nonlinear theory of gravitation in flat space [1, 2], satisfying the four classical effects of the general theory of relativity and the weak principle of equivalence for massive bodies of electromagnetic structure, the weak principle of equivalence is also satisfied for massive bodies of gravitational structure.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 5, pp. 26–32, May, 1979.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号