首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A prototype 3He-based Passive Neutron Albedo Reactivity (PNAR) counter was developed and tested at Los Alamos National Laboratory (LANL) in collaboration with the Korea Atomic Energy Research Institute (KAERI) to measure the fissile content in electrochemical recycling (ER) product materials. The counter consists of 16 3He cylindrical gas-filled proportional counters at 4 atm of pressure embedded in high-density polyethylene. In this work, experimental measurements were performed at LANL to characterize the performance of the PNAR counter using surrogate materials for the uranium metal ingot. The purpose of these experiments was to: 1) measure the operating and calibration parameters of the PNAR counter (e.g. efficiency profiles, coincidence gate fractions, die-away time) and 2) evaluate the accuracy and sensitivity of the PNAR method and the time correlated induced fission (TCIF) method for quantifying the 235U mass in PWR fresh LEU fuel rods and Materials Testing Reactor (MTR) HEU fuel plates. A small 244Cm reference source (13,373 n/s) was placed in the center of the fuel rods and fuel plates to simulate spontaneous fission from sub-ppm (parts per million) levels of Cm contamination in the U ingot. In order to compare the relative accuracy of the PNAR and TCIF methods for quantifying 235U mass, calibration curves were generated for the net doubles rate and the doubles Cd ratio using the Deming software. The results from this experiment will be used to obtain a better understanding of the sensitivity of the PNAR and TCIF methods for samples with low neutron multiplication. Furthermore, this experimental measurement data will also help inform safeguards research and development (R&D) efforts on the viability of nondestructive assay (NDA) techniques and detector designs for quantifying fissile content in ER product materials. Future work will include performing measurements with the PNAR counter on small samples of U/TRU materials.  相似文献   

2.
The low-energy beam and ion trap facility LEBIT at NSCL/MSU is at present the only facility where precision experiments are performed with stopped rare isotope beams produced by fast-beam fragmentation. LEBIT combines high-pressure-gas stopping with advanced ion manipulation techniques to provide brilliant low-energy beams. So far these beams have mainly been used for mass measurements on short-lived rare isotopes with a 9.4T Penning trap mass spectrometer. Recent examples include 70m Br , located at the proton dripline, 32Si and the iron isotopes 63-65Fe . While the measurement of 32Si helps to solve a long-standing dispute over the validity of the isobaric multiplet mass equation (IMME) for the A = 32 , T = 2 multiplet, the mass measurements of 65m,g Fe marked the first time a nuclear isomeric state has been discovered by Penning trap mass spectrometry.  相似文献   

3.
The TITAN facility at TRIUMF-ISAC will use four ion traps with the primary goal of determining nuclear masses with high precision, particularly for short lived isotopes with lifetimes down to approximately 10 ms. The design value for the accuracy of the mass measurement is 1 ×10???8. The four main components in the facility are an RF cooler/buncher (RFCT) receiving the incoming ion beam, an electron beam ion trap (EBIT) to breed the ions to higher charge states, a cooler Penning trap (CPET) to cool the highly charged ions, and finally the measurement Penning trap (MPET) for the precision mass determination. Additional goals for this system are laser spectroscopy on ions extracted from the RFCT and beta spectroscopy in the EBIT (in Penning trap mode) on ions that are purified using selective buffer gas cooling in the CPET. The physics motivation for the mass measurements are manifold, from unitarity tests of the CKM matrix to nuclear structure very far from the valley of stability, nuclear astrophysics and the study of halo-nuclei. As a first measurement the mass of 11Li will be determined. With a lifetime of 8.7 ms and a demonstrated production rate of 4×104 ions/sec at ISAC the goal for this measurement at TITAN is a relative uncertainty of 5×10???8. This would check previous conflicting measurements and provide information for nuclear theory and models.  相似文献   

4.
High-precision mass measurements have been performed on the exotic magnesium isotopes 29-33Mg using the MISTRAL radiofrequency spectrometer, especially suited for very short-lived nuclides. This method, combined with the powerful tool of resonant laser ionization at ISOLDE, has provided a significant reduction of uncertainty for the masses of the most exotic Mg isotopes: a relative error of 7×10-7 was achieved for the weakly produced 33Mg that has a half-life of only 90ms. Moreover, the mass of 33Mg is found to change by over 250keV. Verifying and minimizing binding energy uncertainties in this region of the nuclear chart is important for understanding the lack of binding energy that is normally associated with magic numbers.  相似文献   

5.
Frequency ratio measurements with different combinations of the singly charged ions from 21, 22, 23Na , 22, 24Mg , and 37, 39K were performed at the on-line Penning trap mass spectrometer ISOLTRAP, CERN, Geneva. The masses and mass differences were deduced with a relative uncertainty of about or even below one part in 108 for the ions of interest using a least-squares analysis of all measured relations. The results have direct consequences for weak-interaction study as they give additional input to the test of CVC, and for nuclear astrophysics, because they help to establish the minimum observable signal for a NeNa cycle in a nova burst. We report here about the measurements and the detailed evaluation.  相似文献   

6.
High-precision mass measurements as performed at the Penning trap mass spectrometer ISOLTRAP at ISOLDE/CERN are an important contribution to the investigation of nuclear structure. Precise nuclear masses with less than 0.1 ppm relative mass uncertainty allow stringent tests of mass models and formulae that are used to predict mass values of nuclides far from the valley of stability. Furthermore, an investigation of nuclear structure effects like shell or sub-shell closures, deformations, and halos is possible. In addition to a sophisticated experimental setup for precise mass measurements, a radioactive ion-beam facility that delivers a large variety of short-lived nuclides with sufficient yield is required. An overview of the results from the mass spectrometer ISOLTRAP is given and its limits and possibilities are described.   相似文献   

7.
A new method for measuring compound-nucleus lifetimes in the range of 10?18–10?16 s is presented. The method is based on the comparison between the known lifetime of an atomic excited state used as a reference and the nuclear delay time to be measured. On-line coincidences performed between the nuclear reaction products and the emitted X-rays enable the selection of the atomic vacancies decaying during the compound stage of the nuclear interaction. The main characteristics of this technique are illustrated by measurements of lifetimes of the 107In compound nucleus excited at 13.6 and 15.6 MeV in the 106Cd(p, p')106Cd reaction. They are found in agreement with statistical model calculations. The spurious effect associated with decay by internal conversion of final states populated by the competitive (p, n) reaction is emphasized.  相似文献   

8.
The absolute values of the cross sections for the production of target fragments in the interaction of copper with 7Li ions at an energy of 35 MeV per nucleon were measured. The measurements were performed by recording the yields of radioactive nuclear residues with the aid of a semiconductor detector from ultrapure germanium. The charge and isobaric distributions in the mass-number range 22–69 amu were used to deduce the mass yield of reaction products and to calculate the total interaction cross section. The results are presented that were derived from a comparison with data obtained for 12C + Cu reactions and with estimates based on theoretical models.  相似文献   

9.
ISOLTRAP is a Penning trap mass spectrometer for high-precision mass measurements on short-lived nuclides installed at the on-line isotope separator ISOLDE at CERN. The masses of close to 300 radionuclides have been determined up to now. The applicability of Penning trap mass spectrometry to mass measurements of exotic nuclei has been extended considerably at ISOLTRAP by improving and developing this double Penning trap mass spectrometer over the past two decades. The accurate determination of nuclear binding energies far from stability includes nuclei that are produced at rates less than 100 ions/s and with half-lives well below 100ms. The mass-resolving power reaches 107 corresponding to 10keV for medium heavy nuclei and the uncertainty of the resulting mass values has been pushed down to below 10-8. The article describes technical developments achieved since 1996 and the present performance of ISOLTRAP.  相似文献   

10.
The comparison of mass and energy variation in a nuclear reaction allows an experimental verification of Einstein’s energy - mass equivalence principle. Mass measurements are performed in a high precision Penning trap and yield values in unified atomic mass units. The energies of emitted gamma radiation are determined via Laue-diffraction with perfect crystals. The according values of the gamma ray wave lengths are expressed in units of the crystal lattice constant. The comparison of masses and wave lengths requires a conversion factor, which represents the unified atomic mass unit within the SI unit system. The latter is given by the molar Planck constant N A h, which itself is known via its relation to the fine structure constant. In the present paper we report on measurements carried out until 2003 with an uncertainty level of 4 ⋅ 10-7. We discuss the main limitations of these experiments and outline the possibilities for future measurements at the 10-8 level. Such measurements would allow a direct representation of the unified atomic mass unit in terms of a Compton frequency and are of utmost importance for a future re-definition of the kilogram mass unit.  相似文献   

11.
The success of many measurements in analytical mass spectrometry as well as in precision mass determinations for atomic and nuclear physics is handicapped when the ion sources deliver “contaminations”, i.e., unwanted ions of masses similar to those of the ions of interest. In particular, in ion-trapping devices, large amounts of contaminant ions result in significant systematic errors—if the measurements are possible at all. We present a solution for such cases: The ions from a quasi-continuous source are bunched in a linear radio-frequency-quadrupole ion trap, separated by a multi-reflection time-of-flight section followed by a Bradbury–Nielsen gate, and then captured in a Penning trap. Buffer-gas cooling is used to damp the ion motion in the latter, which allows a repeated opening of the Penning trap for a stacking of mass-selected ion bunches. Proof-of-principle demonstrations have been performed with the ISOLTRAP setup at ISOLDE/CERN, both with 133Cs+ ions from an off-line ion source and by application to an on-line beam of 179Lu+ ions contaminated with 163Dy16O+ ions. In addition, an optimization of the experimental procedure is given, in particular for the number of ion bunches captured as a function of the ions’ lifetimes and the parameters of the experiment .  相似文献   

12.
A novel method for mass measurements of short-lived exotic nuclides is presented. Exotic nuclides were produced and separated in flight at relativistic energies with the fragment separator (FRS) and were injected into the experimental storage ring (ESR). Operating the ESR in the isochronous mode we performed mass measurements of neutron deficient fragments of 84Kr with half-lives larger than 50 ms. However, this experimental technique is applicable in a half-life range down to a few μs. A mass resolving power of 110000 (FWHM) has been achieved. Results are presented for the masses of 68As, 70,71Se and 73Br. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
The results based on the spectroscopy of superheavy hydrogen isotopes (4?7H), heavy helium isotopes (6,7He), and heavy lithium isotopes (7?12Li) produced in stopped pion absorption by light nuclei were analyzed. Search for nuclear states was performed in inclusive and correlation measurements of missing mass spectra. A broad range of excitation energies studied in correlation measurements provided the possibility of search for isobaric analog states and cluster resonances. A comparison with experimental and theoretical results of other authors was conducted.  相似文献   

14.
Radioactivity in underground waters from Mt. Etna was investigated on the basis of 13 samples. The samples were collected from springs, wells and galleries around the volcano. Water from nine out of thirteen intakes is used for consumption. Activity concentration of uranium isotopes 234,238U, radium isotopes 226,228Ra and radon 222Rn were determined with the use different nuclear spectrometry techniques. The measurements of radium and radon activity concentration were performed with the use of a liquid scintillation counter. The determination of uranium isotopes was carried out with the use of alpha spectrometry. All samples show uranium concentration above Minimum Detectable Activity (MDA), with the highest total uranium (234U + 238U) activity concentration equal to 130 mBq/l. For radium isotopes, all samples except one showed the activity concentration below MDA. Radon activity concentration was within the range from 1 to 13 Bq/l, hence these waters can be classified as low-radon waters.  相似文献   

15.
Through the nuclear binding energy, the atomic mass gives us important information about nuclear structure. Viewing the ensemble of mass data over the nuclear chart, we can examine the hills and valleys that form this surface and make hypotheses about the effects of certain nuclear configurations. To unveil these effects, mass measurements of very high precision (<10−6) are required. Two experiments at ISOLDE pursue this effort of nuclear cartography: the tandem Penning trap spectrometer ISOLTRAP and the radiofrequency transmission spectrometer MISTRAL. Between them, the masses of almost 150 nuclides have been measured from stable isotopes to those with half-lives as short as 30 ms. Both experiments rely on good optical properties of a low energy ion beam and are thus well suited to the ISOLDE facility. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
δ-Manganese dioxide (MnO2) has been proved to own the excellent electrochemical performances for a long time. But few of studies report the electrochemical performances of δ-MnO2 film. Here, we synthesize δ-MnO2 film on fluorine-doped tin oxide (FTO) glass via a simple redox reaction at the room temperature. The X-ray diffraction (XRD) and Raman spectroscopy are used to confirm the physical structure, whilst cyclic voltammetry and galvanostatic charge-discharge measurements are performed to investigate the electrochemical performances. Encouragingly, δ-MnO2 film delivers a high specific capacitance (C s) of 350.5 F g?1 at 100 mV s?1 and 275.0 F g?1 at 5 A g?1. The capacitance retention of δ-MnO2 film can be up to 100 % after being charge/discharge at 2 A g?1 with 1000 cycles. This research might further indicate that δ-MnO2 film is a promising electrode material for supercapacitors.  相似文献   

17.
中子多重性技术常用于测量和核查核材料,尤其针对具有较厚屏蔽的对象具有不可替代的优势。钚的自发裂变率较高,可以采用被动测量方法,目前已有多款不同的测量装置。然而铀材料的自发裂变率较低只能采用主动测量方法。现有的主动井型符合计数器(AWCC)能够进行主动中子多重性测量铀材料质量,但依然存在探测效率较低,Am-Li中子源产生偶然符合大等缺点。为提高铀材料测量的效率和精度,对主动中子多重性测量方法开展深入研究非常必要。本文参考AWCC模型,利用Geant4软件对探测器和粒子的输运过程进行建模。研究了多重性移位寄存器的不同符合门宽、不同延迟时间对铀测量结果相对偏差的影响规律。计数器的最佳门宽为44 μs,门宽取值范围在计数器衰减时间的1.5倍左右合适;延迟时间大于3倍计数器衰减时间后,相对偏差显著减少。最后讨论了235U富集度变化对主动中子多重性测量结果的影响。为后续主动中子多重性铀质量测量仪器的设计提供了参考。  相似文献   

18.
Schottky mass spectrometry is a novel method of precision nuclear mass spectrometry based on the measurement of the revolution frequencies of cooled ions in storage rings performed by non-destructive frequency analysis of the beam noise, the well-established Schottky diagnosis technique. The method was applied for the first time at the Experimental Storage Ring ESR at GSI observing electron cooled highly charged ions up to bare nuclei at relativistic energies around several hundred MeV/u. To demonstrate the performance and feasibility of the method at the ESR, experimental tests have been carried out using beams of nuclear fragments produced in the ring itself by the interaction of different primary beams with the internal gas jet target. Futhermore, first Schottky mass measurements of secondary nuclear beams produced by projectile fragmentation of Au and Bi primary beams in a thick Be-target were carried out in order to determine the masses for numerous heavy neutron deficient nuclei which had not been measured before. Relative accuracies for the measured mass values in the order of 1×10–6 and below can be achieved. The method is briefly discussed and some early results are presented.  相似文献   

19.
The mass separated fission product beam provided by the mass separator “Lohengrin” has been used to determine the nuclear charge distribution for the thermal-neutron-induced fission of235U for all light fission products in the region 80≦A≦107. The measurements were performed at the most probable kinetic energy of the fission products. By using the known fission product mass yields, the independent yields for a total number of 100 nuclides were obtained under the condition of the most probable kinetic energy. The proton pairing effect modulates the average nuclear charge of the fission fragments and the isobaric charge distribution widths in a regular fashion. The probabilities of breaking a pair and of forming fragments with an energetically unfavourable neutron-to-proton ratio are found to compete with each other. Both probabilities depend on the mass split and reach their maximum values in the region of the most probable masses. The odd-even-proton effect is found to vary smoothly between 16% for the most abundant mass splits and 40% for the rare mass splits. The odd-even-neutron effect exhibits maxima nearN=50 andN=60, where it reaches 16%. These maxima and the extremely low Tcyield (0.13±0.05%) are discussed with regard to fragment shell effects.  相似文献   

20.
TDPAC measurements of the 150–247 keV gamma-ray cascade in111Cd have been performed at room temperature on Calmodulin (CaM) and Parvalbumin (Pa) labelled with radioactive111mCd. The anisotropy of the coincidence counting rate shows a time-dependent behaviour, typical of two different nuclear quadrupole interactions (NQI) in CaM. The NQI parameters indicate the presence of two distinct metal-binding sites, presenting non-equivalent local electric charge structure. In Pa samples, only one NQI is observed and the measured electric field gradient (EFG) value agrees well with the large one obtained in CaM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号