首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The current–voltage characteristics of Schottky diodes with an interfacial insulator layer are analysed by numerical simulation. The current–voltage data of the metal–insulator–semiconductor Schottky diode are simulated using thermionic emission diffusion (TED) equation taking into account an interfacial layer parameter. The calculated current–voltage data are fitted into ideal TED equation to see the apparent effect of interfacial layer parameters on current transport. Results obtained from the simulation studies shows that with mere presence of an interfacial layer at the metal–semiconductor interface the Schottky contact behave as an ideal diode of apparently high barrier height (BH), but with same ideality factor and series resistance as considered for a pure Schottky contact without an interfacial layer. This apparent BH decreases linearly with decreasing temperature. The effects giving rise to high ideality factor in metal–insulator–semiconductor diode are analysed. Reasons for observed temperature dependence of ideality factor in experimentally fabricated metal–insulator–semiconductor diodes are analysed and possible mechanisms are discussed.  相似文献   

2.
The transparency of the tunnel barriers in double-barrier junctions influences the critical current density and the form of the current–voltage characteristics (IVC). Moreover, the barrier asymmetry is an important parameter, which has to be controlled in the technological process. We have performed a systematic study of the influence of the barrier transparency on critical current, IC, and normal resistance, RN, by preparing SIS and SINIS junctions under identical technological conditions and comparing their transport properties. We have fabricated Nb/Al2O3/Nb and Nb/Al2O3/Al/Al2O3/Nb devices with different current densities using a conventional fabrication process, varying pressure and oxidation time. The thickness of the Al middle electrode in all Nb/Al2O3/Al/Al2O3/Nb junctions was 6 nm. Patterning of the multilayers was done using conventional photolithography and the selective niobium etching process. The current density of SIS junctions was changed in the range from 0.5 to 10 kA/cm2. At the same conditions the current density of SINIS devices revealed 1–100 A/cm2 with non-hysteretic IVC and characteristic voltages, ICRN, of up to 200 μV. By comparing the experimental and theoretical temperature dependence of the ICRN product we estimated the barrier transparency and its asymmetry. The comparison shows a good agreement of experimental data with the theoretical model of tunneling through double-barrier structures in the dirty limit and provides the effective barrier transparency parameter γeff≈300. A theoretical framework is developed to study the influence of the barrier asymmetry on the current–phase relationship and it is proposed to determine the asymmetry parameter by measuring the critical current suppression as function of applied microwave power. The theoretical approach to determine the non-stationary properties of double-barrier junctions in the adiabatic regime is formulated and the results of calculations of the IV characteristics are given in relevant limits. The existence and the magnitude of a current deficit are predicted as function of the barrier asymmetry.  相似文献   

3.
A method for the calculation of magnetic field dynamics and AC losses in superconductors with smooth current–voltage characteristics is described. It is based on an integral equation for the current density, recently used by Brandt for magnetic relaxation. Brandt's equation is generalized to include arbitrary external magnetic fields and transport currents. One of the benefits of the integral equation formulation is that no boundary conditions ‘at infinity' are required, thus restricting the calculation region to the conductor cross section. The method is applied to superconducting tapes in oblique external fields. A further extension of the theory is shown to be applicable to the calculation of coupling losses in twisted multifilamentary superconductors.  相似文献   

4.
The bias dependent interface charge is considered as the origin of the observed non-ideality in current–voltage and capacitance–voltage characteristics. Using the simplified model for the interface electronic structure based on defects interacting with the continuum of interface states, the microscopic origin of empirical parameters describing the bias dependent interface charge function is investigated. The results show that in non-ideal metal–semiconductor contacts the interface charge function depends on the interface disorder parameter, density of defects, barrier pinning parameter and the effective gap center. The theoretical predictions are tested against several sets of published experimental data on bias dependent ideality factor and excess capacitance in various metal–semicoductor systems.  相似文献   

5.
We determined the density of state distribution near the Fermi level in porous silicon from the analysis of the current–voltage (JV) and the current–thickness (JT) characteristics in the space-charge-limited-current (SCLC) regime. The distribution exhibits a minimum density at the Fermi level, which is similar to the U-shape-trap-distribution observed in crystalline Si–SiO2 interface or in amorphous Si. Theoretical analysis well explains both the JV and the JL characteristics, which implies that the current flow is entirely controlled by localized states situated at the quasi-Fermi level.  相似文献   

6.
The current–voltage (IV) and capacitance–voltage (CV) behaviour of different Si/Ge multilayers and SiGe single layers prepared on p-type Si substrates by magnetron sputtering and annealing, has been studied in the temperature range of 80–320 K by using Al Schottky contacts as test structures. Although a significant influence of the microstructure of the Si/Ge multilayers and SiGe layers was obtained on the electrical behaviour of the structures, the structures exhibited similar specific features.  相似文献   

7.
X. Guo  J. Maier 《Solid State Ionics》2000,130(3-4):267-280
Hebb–Wagner polarisation is analysed for the case that internal redox-reactions complicate the situation. In the general case current–voltage characteristics deviate significantly from the Hebb–Wagner equation. Analytical results are derived and relevant approximations given. Theoretical and experimental current–voltage relations obtained for a 2.15×1018 cm−3 Fe-doped SrTiO3 single crystal at PO2=105 Pa, agree reasonably well, and the results of the partial conductivities match findings obtained from other experiments. In addition, the fact is emphasised that a Hebb–Wagner-type current–voltage relation only requires the fulfilment of a power law for the non-blocked carrier concentrations with respect to the component partial pressure and not a field-free situation. In this case the Faraday constant appearing in the Hebb–Wagner equation has to be replaced by F, where is the product of the number of electrons necessary to ionise the gaseous component (n) times the absolute characteristic exponent (|N|). The condition of zero field, i.e. negligible chemical potential gradient with respect to the non-blocked species is identical to |N|=1/n. If |N|=const≠1/n, the internal field is non-zero but is still proportional to the gradient of the component potential.  相似文献   

8.
The electrical conductivity, optical and metal–semiconductor contact properties of the MEH-PPV:C70 organic semiconductor have been investigated. The electrical conductivity results show that the MEH-PPV:C70 film is an organic semiconductor. The optical band gap of the film was found to be 2.06 eV and the fundamental absorption edge in the film is formed by the direct allowed transitions. The refractive index dispersion curve of the film obeys the single oscillator model and Ed and Eo dispersion parameters were found to be 10.61 and 3.89 eV, respectively. The electrical characterization of the ITO/MEH-PPV:C70 diode have been investigated by current–voltage characteristics. ITO/MEH-PPV:C70 diode indicates a non-ideal current–voltage behavior with ideality factor n (2.50) and barrier height φB (0.90 eV) values.  相似文献   

9.
In present study diamond like carbon (DLC) films were deposited by closed drift ion source from the acetylene gas. The electrical and piezoresistive properties of ion beam synthesized DLC films were investigated. Diode-like current–voltage characteristics were observed both for DLC/nSi and DLC/pSi heterostructures. This fact was explained by high density of the irradiation-induced defects at the DLC/Si interface. Ohmic conductivity was observed for DLC/nSi heterostructure and metal/DLC/metal structure at low electric fields. At higher electric fields forward current transport was explained by Schottky emission and Poole–Frenkel emission for the DLC/nSi heterostructures and by Schottky emission and/or space charge limited currents for the DLC/pSi heterostructures. Strong dependence of the diamond like carbon film resistivity on temperature has been observed. Variable range hopping current transport mechanism at low electric field was revealed. Diamond like carbon piezoresistive elements with a gauge factor in 12–19 range were fabricated.  相似文献   

10.
Double-barrier highly asymmetric Nb–Al oxide–Al–Nb oxide–Nb structures with reproducible characteristics were fabricated. The heterocontacts with the middle Al layer thickness ranging from 4 to 6 nm exhibited a well-defined d.c. Josephson supercurrent Ic at 4.2 K and characteristic voltages Vc=IcRN (RN is the normal resistance, Vc defines the response time of the junction) from 0.3 to 0.4 mV. Two prominent features in the quasiparticle current–voltage curves have been observed: a so-called ‘knee' in the energy-gap region and an additional (to the linear voltage dependence) current at higher biases. They are discussed within a simple Landauer–Büttiker scattering approach to the phase-coherent quasiparticle transport in a quasiballistic S–I1–N–I2–S heterostructure with an extremely great difference between the barrier transparencies.  相似文献   

11.
We study the transport of vortices excited by an ac current in an Al film with an array of nanoengineered asymmetric antidots. The vortex response to the ac current is investigated by detailed measurements of the voltage output as a function of ac current amplitude, magnetic field, and temperature. The measurements revealed pronounced voltage rectification effects which are mainly characterized by the two critical depinning forces of the asymmetric potential. The shape of the net dc voltage as a function of the excitation amplitude indicates that our vortex ratchet behaves in a way very different from standard overdamped models. Rather, the repinning force, necessary to stop vortex motion, is considerably smaller than the depinning force, resembling the behavior of the so-called inertia ratchets. Calculations based on an underdamped ratchet model provide a very good fit to the experimental data.  相似文献   

12.
A detailed study of the effects of the ageing on the characteristic parameters of polyaniline/p-type Si/Al structure has been presented. The polyaniline film has been formed on a p-type Si substrate by means of an anodization process. The polyaniline/p-Si/Al structure has demonstrated clearly rectifying behavior by the current–voltage (IV) curves studied at room temperature. The current–voltage curves of the structure have been measured immediately, 15, 30, 60, 90 and 120 days after fabrication of the polyaniline/p-Si/Al structure. It has been seen that the characteristic parameters, such as barrier height (BH), ideality factor and series resistance of polyaniline/p-type Si/Al structure have slowly changed with increasing ageing time. The diode shows non-ideal IV behavior with an ideality factor greater than unity that can be ascribed to the interfacial layer, the interface states and the series resistance.  相似文献   

13.
In a typical superconducting coil made of BSCCO/Ag tape, both amplitude and direction of the magnetic field determine the critical current, resistive voltage and AC loss. The distribution of the magnetic field along and across the superconducting tape in a coil is rather complex. This gives rise to the question: how accurate can one predict the critical current, VI characteristic and AC loss of the AC coil from results of short sample measurements? To answer this question, we have measured and compared the characteristics of a short sample and a small coil employing 14 m of the same tape at 77 K. The comparison is performed as follows. First, a short sample is characterised with regard to the field dependence of the critical current, VI characteristic and the AC loss. Second, the distribution of the magnetic field along the tape in a coil is accurately calculated. From the data, the voltage along the tape and the loss of the tape in the coil are found. Finally, the resistive voltage and the AC loss of the complete coil are calculated and compared to measured AC losses in the frequency range of 0 to 160 Hz, typical for power applications.  相似文献   

14.
Thin films of 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) were used as an interlayer for the electronic modification of Ag/n-GaAs(100) Schottky contacts. The electronic properties were investigated recording in situ current–voltage (IV) and capacitance–voltage (CV) characteristics. For H-plasma treated substrates the effective barrier height decreases from 0.81 to 0.64 eV as a function of the PTCDA layer thickness (dPTCDA). In the case of the sulphur passivated GaAs the effective barrier height first increases and then decreases, the overall range being 0.54–0.73 eV. The substrate treatment leads to a different alignment between the band edges of the GaAs and the molecular orbitals of the PTCDA, making it possible to determine the energy position of the LUMO transport level.  相似文献   

15.
The morphology of and electron tunneling through single and cluster cytochrome c molecules deposited on self-assembled dodecanthiol monolayer film on a gold substrate have been studied experimentally using scanning tunneling microscopy (STM) and scanning tunneling spectroscopy. STM images of a single cytochrome c molecule revealed a globular structure with a diameter of 4 nm and height of 1.5 nm. A spectroscopic study obtained by recording tunneling current–bias voltage (VI) curves revealed that the STM current increases stepwise at asymmetric threshold sample bias voltages of +100 mV and –200 mV.  相似文献   

16.
The fabrication and characterization of ZnO UV detector   总被引:9,自引:0,他引:9  
ZnO films were deposited on GaAs substrates by radio frequency (rf) magnetron sputtering followed by an ambient-controlled heat treatment process for arsenic doping. In Hall measurements, the As-doped ZnO films showed the characteristics of p-type semiconductor. The ZnO thin film p–n homojuctions were then fabricated to investigate the electrical properties of the films. The p–n homojunctions exhibited the distinct rectifying current–voltage (IV) characteristics. The turn-on voltage was measured to be 3.0 V under the forward bias. When ultraviolet (UV) light (λ = 325 nm) was irradiated on the p–n homojunction, photocurrent of 2 mA was detected. Based on these results, it is proposed that the p–n homojunction herein is a potential candidate for UV photodetector and optical devices.  相似文献   

17.
Porous silicon/c-Si heterostructures have been formed by the method of stain etching.The properties of light emitting diodes (LED) and solar cells have been studied. The transport mechanism of the diode has been investigated from the current–voltage characteristics measured at different temperatures (296–380 K). A model based on multi-step tunneling of carriers at reverse and low forward bias (<1 V) and on field tunneling across a narrow barrier at higher forward bias (>1.5 V) is proposed for the LED. In the case of the solar cells the porous silicon is formed in between the fingers of the front grid contact. Application of porous silicon in solar cells results in an increase of the short-circuit current and efficiency of the cells by about 30%.  相似文献   

18.
Resonant interaction of a soliton (Josephson fluxon) with its self-generated Josephson plasma waves is studied experimentally, numerically, and analytically. An externally applied magnetic field H forms a cos-like potential relief for the soliton in the annular junction. Soliton motion under the influence of the bias current leads to an emission of plasma waves, which gives rise to a resonance at a certain soliton velocity. This resonance on the current–voltage characteristics shows a clear backbending accompanied by a negative differential resistance. Our analysis quantitatively explains the observed effect.  相似文献   

19.
A method for evaluating a band offset of a heterojunction is proposed by measuring temperature dependence of current–voltage (IV) characteristics in triple-barrier resonant tunneling diodes (TBRTDs). The method was applied for investigating a conduction band offset by using GaAs0.25P0.75/GaAs TBRTDs with thin strain heterobarriers grown by MOCVD and ΔEc was estimated as 200–240 meV. In the strain-barrier TBRTDs, negative differential resistance was observed below 100 K.  相似文献   

20.
The investigations on the properties of HfO2 dielectric layers grown by metalorganic molecular beam epitaxy were performed. Hafnium-tetra-tert-butoxide, Hf(C4H9O)4 was used as a Hf precursor and pure oxygen was introduced to form an oxide layer. The grown film was characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), high-resolution transmission electron microscopy (HRTEM), and capacitance–voltage (CV) and current–voltage (IV) analyses. As an experimental variable, the O2 flow rate was changed from 2 to 8 sccm while the other experimental conditions were fixed. The XPS spectra of Hf 4f and O 1s shifted to the higher binding energy due to the charge transfer effect and the density of trapped charges in the interfacial layer was increased as the oxygen flow rate increased. The observed microstructure indicated the HfO2 layer was polycrystalline, and the monoclinic phases are the dominant crystal structure. From the CV analyses, k = 14–16 and EOT = 44–52 were obtained, and the current densities of (3.2–3.3) × 10−3 A/cm2 were measured at −1.5 V gate voltage from the IV analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号