首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
In this study, we report the synthesis of new Schiff base E-1-(((1-benzylpiperidin-4-yl)imino)methyl)naphthalenee-2-ol (L) and evaluation of its fluorescence response toward Cu2+ ion. Preliminary, solvent effect, metal selectivity and metal ligand ratio were analyzed through UV-Visible study. Fluorescence response toward Cu2+ was carried to assess the fluorescent property of synthesized Schiff base. The probe exhibited a higher fluorescence enhancement in the presence of Cu2+ over other metal ions (Ni2+, Zn2+, Hg2+, Co2+, Cd2+, Al3+, Fe2+, and Pb2+). The binding stoichiometry between L and Cu2+ has been investigated using Job’s plot and Benesi-Hildebrand equation and it was found that ligand L can form 1:1 L-Cu2+ complex with binding constant (K a) of 4?×?104 LM?1.  相似文献   

2.
The thermal decomposition of 2,4-diazido-6-trinitromethyl-1,3,5-triazine, 2,4-dimethoxy-6-trinitromethyl-1,3,5-triazine, and 2,4-diazido-6-methoxy-1,3,5-triazine in a melt was studied by differential scanning calorimetry, thermogravimetry, manometry, mass spectrometry, and IR spectroscopy. The kinetics of these reactions was investigated, and the activation parameters were determined. The gaseous products of the decomposition of 6-trinitromethyl-2,4-diazido-1,3,5-triazine were N2, NO, N2O, CO, and CO2 in a molar ratio of 1: 2: 1: 0.6: 1 and pronounced amounts of NO2. A comparison of kinetic data for the compounds under study indicated that the azide groups in 2,4-diazido-6-trinitromethyl-1,3,5-triazine were thermally more stable than the trinitromethyl group.  相似文献   

3.

The development of a highly sensitive, selective, and efficient sensor for the determination and detection of Cr(III) ions remains a great challenge. Recently, some fluorescent chemosensors have been developed for the recognition of Cr(III) ions. But, the main drawbacks of the reported fluorescent chemosensors are the lack of selectivity and interference of anions and other trivalent cations. Herein, we designed and synthesized a novel thiazole-based fluorescent and colorimetric Schiff base chemosensor SB2 for the detection of Cr(III) ion by chemodosimetric approach. Using different analytical techniques including UV–vis, 13C-NMR, 1H-NMR, and FT-IR analysis the chemosensor SB2 was structurally characterized. The fully characterized chemosensor SB2 was used for the spectrofluorimetric and colorimetric detection of Cr(III) ions. Interestingly, chemosensor SB2 upon interaction with various metal cations including Ni2+, Na+, Cd2+, Ag+, Mn2+, K+, Zn2+, Cu2+, Hg2+, Co2+, Pb2+, Mg2+, Sn2+, Al3+ and Cr3+ displays highly selective and sensitive fluorescent (turn-on) and colorimetric (yellow to colorless) response toward Cr(III) ions. The fluorescence and UV–vis techniques confirmed the selective hydrolysis of azomethine group (-C?=?N-) of Schiff base chemosensor SB2 by Cr(III) ions. As a result, the fluorescence enhancement was observed that is corresponding to 2-hydroxy-1-nepthaldehyde (fluorophore). The chemosensor SB2 exhibits high interference performance towards Cr(III) ions over other metal cations in a wide pH range. Mover, the quite low detection limit was calculated to be 0.027 µg ml-1 (0.5 µM) (3σ/slop), lower than the maximum tolerable limits of Cr(III ions (10 µM) in drinking water permitted by the United States Environmental Protection Agency (EPA). These results show that chemosensor SB2 has great potential to detect selectively Cr(III) ions in the agricultural, environmental and biological analysis system.

Graphical Abstract
  相似文献   

4.
A series of three di-ionizable calix[4]arenes with two pendant dansyl (1-dimethylaminonaphthalene-5-sulfonyl) groups linked to the lower rims was synthesized. Structures of the three ligands were identical except for the length of the spacers which connected the two dansyl groups to the calix[4]arene scaffold. Following conversion of the ligands into their di-ionized di(tetramethylammonium) salts, absorption and emission spectrophotometry were utilized to probe the influence of metal cation (Li+, Na+, K+, Rb+, Cs+, Mg2+, Ca2+, Sr2+, Ba2+, Ag+, Cd2+, Co2+, Fe2+, Hg2+, Mn2+, Pb2+, Zn2+ and Fe3+) complexation in acetonitrile. Upon complexation with these metal cations, emission spectra underwent marked red shifts and quenching of the dansyl group fluorescence for the di-ionized ligand with the shortest spacer. A similar effect was noted for the di-ionized ligand with an intermediate spacer for all of the metal ions, except Ba2+. For the di-ionized ligand with the longest spacer, the metal cations showed different effects on the emission spectrum. Li+, Mg2+, Ca2+ and Ba2+ caused enhancement of emission intensity with a red shift. Other metal cations produce quenching with red shifts in the emission spectra. Transition metal cations interacted strongly with all three di-ionized ligands. In particular, Fe3+ and Hg2+ caused greater than 99% quenching of the dansyl fluorescence in the di-ionized ligands.  相似文献   

5.
Time-gated luminescence detection technique using lanthanide complexes as luminescent probes is a useful and highly sensitive method. However, the effective application of this technique is limited by the lack of the target-responsive luminescent lanthanide complexes that can specifically recognize various analytes in aqueous solutions. In this work, a dual-functional ligand that can form a stable complex with Tb3+ and specifically recognize Hg2+ ions in aqueous solutions, N,N,N 1 ,N 1 -{[2,6-bis(3′-aminomethyl-1′-pyrazolyl)-4-[N,N-bis(3″,6″-dithiaoctyl)-aminomethyl]- pyridine]} tetrakis(acetic acid) (BBAPTA), has been designed and synthesized. The luminescence of its Tb3+ complex is weak, but can be effectively enhanced upon reaction with Hg2+ ions in aqueous solutions. The luminescence response investigations of BBAPTA-Tb3+ to various metal ions indicate that the complex has a good luminescence sensing selectivity for Hg2+ ions, but not for other metal ions. Thus a highly sensitive time-gated luminescence detection method for Hg2+ ions was developed by using BBAPTA-Tb3+ as a luminescent probe. The dose-dependent luminescence enhancement of the probe shows a good linearity with a detection limit of 17 nM for Hg2+ ions. These results demonstrated the efficacy and advantages of the new Tb3+ complex-based luminescence probe for the sensitive and selective detection of Hg2+ ions.  相似文献   

6.
In this study ground and excited states acidic dissociation constants of a recently synthesized Schiff base was obtained in a DMF:water mixture of 30:70 (v/v) using absorption and fluorescent spectra of the Schiff base in different pH values with the aid of chemometric methods. In addition, the fluorescent of the two kinds of tautomers of this Schiff base was investigated and the rate of tautomerization was obtained using rank annihilation factor analysis (RAFA). The effect of different kinds of surfactants such as sodium dodecyl sulfate (SDS), cetyltrimethylammonium bromide (CTAB) and Triton X-100 on fluorescence spectrum of the Schiff base in a DMF:water mixture of 2:98 (v/v) was investigated. CTAB increased the fluorescence intensity of the Schiff base while SDS and Triton X-100 had no significant effect on it. β-Cyclodextrin increased the fluorescence intensity of the Schiff base. Also the sensing behavior of this Schiff base toward metal ions was studied in DMF and ethanol by fluorescence spectroscopy. The Schiff base showed prominent fluorescent signal in the presence of Zn2+, whereas other metal ions failed to induce response and ground-state dissociation constant of the complex was determined by direct fluorimetric titration as a function of Zn2+ concentration.  相似文献   

7.
Poly(acrylonitrile)/cellulose block copolymer (PAN-b-cell) was prepared by using a free radical initiating process and then the nitrile functional groups of the PAN blocks of the copolymers were transformed into amidoxime ligands. The resulting poly(amidoxime) ligands could complex with heavy metal ions; for example, the reflectance spectra of the [Cu -ligand]n+ was found to be at the highest absorbance, about 94%, at pH 6. The pH was the key parameter for metal ions sensing by the ligand. The adsorption capacity for copper was very good, 272 mg g?1, with a fast adsorption rate (t1/2 = 10 min). The adsorption capacities for other heavy metal ions such as Fe3+, Cr3+, Co3+ and Ni2+ were also good, being 242, 219, 201 and 195 mg g?1, respectively, at pH 6. The heavy metal ions removal efficiency from water was 98% at low concentration. The data proved that the heavy metal ions adsorption onto the polymer ligands were well fitted with the Langmuir isotherm model (R2>0.99), which suggests that the cellulose-based adsorbent surface namely the poly(amidoxime) ligand, was homogenous and a monolayer. The reusability was examined by a sorption/desorption process for six cycles and the extraction efficiency was determined. This new adsorbent could be reused for 6 cycles without any significant loss in its original removal function.  相似文献   

8.
A new cryptand compound carrying 2-hydroxy-1-naphthylidene Schiff base moiety (3) was designed and synthesized by reaction of the corresponding macrobicyclic amine compound (1) and 2-hydroxy-1-naphthaldehyde (2). The influence of metal cations such as Mg2+, Ca2+, Sr2+, Fe2+,Co2+, Mn2+, Zn2+, Cd2+, Hg2+, Al3+ and Pb2+ on the spectroscopic properties of the new fluoroionophore was investigated in acetonitrile-dichloromethane solution (9.5/0.5) by means of absorption and emission spectrometry. The blue shifts on the fluorescence spectrum were observed for all metal cations at 504nm. At the same time the fluorescence spectrum of the ligand showed quenching in the intensity of the signal at 504 nm for all metal cations except for Zn2+. Interaction of Co2+ with the ligand caused quenching of naphtyl fluorescence higher than 84%. The method showed good selectivity and sensitivity for Co2+ with respect to other metal cations with linear range and detection limit of 1.5 × 10−7 to 3.3 × 10−6M and 4.8 × 10−8M respectively.  相似文献   

9.
A new 4,5-diazafluorene-based fluorescent chemosensor has been synthesized by Schiff base condensation of 9,9-bis(3,5-dimethyl-4-aminophenyl)-4,5-diazafluorene with salicylaldehyde. The interaction of Schiff base with different metal ions has been studied over photofluorescent spectra. The results showed that Schiff base exhibited 194-fold enhancements in fluorescence at 465 nm after Zn2+ ions. Such fluorescent responses could be detected by naked eye under UV-lamp. The complex solution (L-Zn2+) exhibited reversibility with EDTA.  相似文献   

10.
A series of crown ethers carrying a pyrene group with nitrogen–sulfur donor atoms, that differ in having three, four and five sulfur atoms in the macrocycle was designed and synthesized by the reaction of the corresponding macrocyclic compound and 1-bromomethylpyrene. The influence of metal cations such as Mn2+, Fe2+, Fe3+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Hg2+, Pb2+ and Al3+ on the spectroscopic properties of the ligands was investigated in acetonitrile–dichloromethane (1:1) by means of absorption and emission spectrometry. Absorption spectra show isosbestic points in the spectrophotometric titration of Fe2+, Zn2+, Cu2+, Pb2+ and Hg2+. The results of spectrophotometric titration experiments disclosed the complexation compositions and complex stability constants of the novel ligands with Fe2+, Zn2+, Cu2+, Pb2+ and Hg2+ cations. The monoazatetrathia crown ether showed good sensitivity for Cu2+ with linearity in the range 5.0×10?7–2.5×10?6 M and detection limit of 1.6×10?8 M.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号