首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 729 毫秒
1.
There is a point of view from which a field governed by the Dirac equation for the electron is the same as a field governed by the Maxwell-Lorentz equations for electromagnetic fields. This observation suggests the possibility that the two sets of equations are of the same origin.  相似文献   

2.
In an accompanying paper (I), it is shown that the basic equations of the theory of Lorentzian connections with teleparallelism (TP) acquire standard forms of physical field equations upon removal of the constraints represented by the Bianchi identities. A classical physical theory results that supersedes general relativity and Maxwell-Lorentz electrodynamics if the connection is viewed as Finslerian. The theory also encompasses a short-range, strong, classical interaction. It has, however, an open end, since the source side of the torsion field equation is not geometric.In this paper, Kaehler's partial geometrization of the Dirac equation is taken as a starting point for the development of fully geometric Dirac equations via the correspondence principle given in I. For this purpose, Kaehler's calculus (where the spinors are differential forms) is generalized so that it also applies when the torsion is not zero. The point is then made that the forms can take values in tangent Clifford algebras rather than in tensor algebras. The basic Eigenschaft of the Kaehler calculus also is examined from the physical perspective of dimensional analysis.Geometric Dirac equations of great structural simplicity are finally inferred from the standard Dirac equation by using the aforementioned correspondence principle. The realm of application of the Dirac theory is thus enriched in principle, though only at an abstract level at this point: the standard spinors, which are scalar-valued forms in the Kaehler version of that theory, become Clifford-valued. In addition, the geometrization of the Dirac equation implies a geometrization of the Dirac current. When this current is replaced in the field equations for the torsion, the theory of Paper I becomes fully geometric.  相似文献   

3.
It is shown that the usual procedures of obtaining the macroscopic Maxwell equations from the microscopic Maxwell-Lorentz equations by performing averages contain an arbitrary choice of gauge. By a suitable different choice of the gauge the so-obtained Maxwell equations can be cast back to the form of the starting Maxwell-Lorentz equations. Therefore one cannot consider the Maxwell equations to be obtainable from the Maxwell-Lorentz equations by simply performing averages. The implication of this result is that besides the electromagnetic fields produced by the moving electric charges, as given by the Maxwell-Lorentz equations, there may be some other agents that cannot be identified as some kind of motion of the electric charges and that participate in the production of the electromagnetic fields.  相似文献   

4.
It is shown that the Dirac equation can be written in a form similar to Maxwell equations, where the Maxwell tensor is written as a bilinear expression of the Dirac field and the current is a simple function of the external potential and the Dirac field. Similarly, the Maxwell equations can be written as a self-coupled Dirac equation where the potential is a simple function of the Dirac field itself. It is illustrated by examples how the new formalism helps to find solutions of the coupled field equations.  相似文献   

5.
We study subsolutions of the Dirac and Duffin-Kemmer-Petiau equations described in our earlier papers. It is shown that subsolutions of the Duffin-Kemmer-Petiau equations and those of the Dirac equation obey the same Dirac equation with some built-in projection operator. This covariant equation can be referred to as supersymmetric since it has bosonic as well as fermionic degrees of freedom.  相似文献   

6.
Some preliminary results presented in two previous papers are expanded upon. In the first it was shown that the Maxwell equations are equivalent to a nonlinear Dirac-like spinor equation. In the present paper it is shown that, in that formalism, the Dirac equation for the free electron is susceptible to a puzzling reinterpretation. In fact, it is shown that the Dirac equation is equivalent to the Maxwell equations for an electromagnetic field generated by two currents: one electric in nature and one, magnetic-monopolar. The elaboration of this result brings a nonlinear generalization of Maxwell's equations, as well as a nonlinear Dirac-like equation fully equivalent to them, from which both the electron mass as well as the magnetic monopole mass appear to be fully electromagnetic in nature, and the magnetic monopole to be tachyonic. The corresponding nonlinear Dirac equation reduces, under suitable approximations, to the ordinary Dirac equation for the free electron.  相似文献   

7.
We present and discuss the Klein–Gordonand Dirac wave equations in the de Sitter universe. Toobtain the Dirac wave equation we use the factorizationof the second-order invariant Casimir operatorassociated to the Fantappie–de Sitter group. Boththe Klein–Gordon and Dirac wave equations arediscussed in terms of the spherical harmonics with spinweight. A particular case of Dirac wave equation issolved in terms of a new class of polynomials.  相似文献   

8.
The second-order radial differential equations for the relativistic Dirac hydrogen atom are derived from the Dirac equation treated as a system of partial differential equations. The quantum operators which arise in the development are defined and interpreted as they appear. The splitting in the energy levels is computed by applying the theory of singularities for second-order differential equations to the Klein-Gordon and Dirac relativistic equations. In the Dirac radial equation additional terms appear containing a constant, which is shown to be the radius of the electron. It is concluded that the minute perturbation of the radial eigenfunction in the vicinity of the proton brought about by the extension of the elementary particles, which appears naturally out of the Dirac equations, results in the prediction of the observed splitting of the hydrogen atom energy levels by the Dirac theory. The extension of the particles arises even though the Dirac hydrogen atom is originally formulated for point charges.  相似文献   

9.
We show that Bose-Einstein condensates in a honeycomb optical lattice can be described by a nonlinear Dirac equation in the long wavelength, mean field limit. Unlike nonlinear Dirac equations posited by particle theorists, which are designed to preserve the principle of relativity, i.e., Poincaré covariance, the nonlinear Dirac equation for Bose-Einstein condensates breaks this symmetry. We present a rigorous derivation of the nonlinear Dirac equation from first principles. We provide a thorough discussion of all symmetries broken and maintained.  相似文献   

10.
We considered an extension of the standard functional for the Einstein–Dirac equation where the Dirac operator is replaced by the square of the Dirac operator and a real parameter controlling the length of spinors is introduced. For one distinguished value of the parameter, the resulting Euler–Lagrange equations provide a new type of Einstein–Dirac coupling. We establish a special method for constructing global smooth solutions of a newly derived Einstein–Dirac system called the CL-Einstein–Dirac equation of type II (see Definition 3.1).  相似文献   

11.
Self-duality equations for Yang-Mills fields and the Dirac equation with an external (anti-) selfdual gauge field are studied in the Minkowski space by spinorial methods. For the Dirac equations, all (four) possible combinations of the fermion chirality and duality of the external fields are considered.  相似文献   

12.
We study a fermion-boson transformation. Our approach is based on the 3 × 3 equations which are subequations of both the Dirac and Duffin-Kemmer-Petiau equations and thus provide a link between these equations. We show that solutions of the free Dirac equation can be converted to solutions of spin- 0 Duffin-Kemmer-Petiau equation and vice versa. Mechanism of this transition assumes existence of a constant spinor.  相似文献   

13.
In thispaper three types of relativistic bound-state equations for a fermion pair with instantaneous interaction are studied, viz., the instantaneous Bethe-Salpeter equation, the quasi-potential equation, and the two-particle Dirac equation. General forms for the equations describing bound states with arbitrary spin, parity, and charge parity are derived. For the special case of spinless states bound by interactions with a Coulomb-type potential the properties of the ground-state solutions of the three equations are investigated both analytically and numerically. The coupling-constant spectrum turns out to depend strongly on the spinor structure of the fermion interaction. If the latter is chosen such that the nonrelativistic limits of the equations coincide, an analogous spectrum is found for the instantaneous Bethe-Salpeter and the quasi-potential equations, whereas the two-particle Dirac equation yields qualitatively different results.  相似文献   

14.
The Dirac equation in a curved spacetime depends on a field of coefficients (essentially the Dirac matrices), for which a continuum of different choices are possible. We study the conditions under which a change of the coefficient fields leads to an equivalent Hamiltonian operator H, or to an equivalent energy operator E. We do that for the standard version of the gravitational Dirac equation, and for two alternative equations based on the tensor representation of the Dirac fields. The latter equations may be defined when the spacetime is four‐dimensional, noncompact, and admits a spinor structure. We find that, for each among the three versions of the equation, the vast majority of the possible coefficient changes do not lead to an equivalent operator H, nor to an equivalent operator E, whence a lack of uniqueness. In particular, we prove that the Dirac energy spectrum is not unique. This non‐uniqueness of the energy spectrum comes from an effect of the choice of coefficients, and applies in any given coordinates.  相似文献   

15.
We study analytically and numerically an optical analogue of Dirac solitons in binary waveguide arrays in the presence of Kerr nonlinearity. Pseudo-relativistic soliton solutions of the coupled-mode equations describing dynamics in the array are analytically derived. We demonstrate that with the found soliton solutions, the coupled mode equations can be converted into the nonlinear relativistic 1D Dirac equation. This paves the way for using binary waveguide arrays as a classical simulator of quantum nonlinear effects arising from the Dirac equation, something that is thought to be impossible to achieve in conventional (i.e. linear) quantum field theory.  相似文献   

16.
Maxwell's equations (the Faraday and Ampère-Maxwell laws) can be presented as a three-component equation in a way similar to the two-component neutrino equation. However, in this case, the electric and magnetic Gauss laws can not be derived from first principles. We have shown how all Maxwell equations can be derived simultaneously from first principles, similar to those which have been used to derive the Dirac relativistic electron equation. We have also shown that equations for massless particles, derived by Dirac in 1936, lead to the same result. The complex wave function, being a linear combination of the electric and magnetic fields, is a locally measurable and well understood quantity. Therefore Maxwell equations should be used as a guideline for proper interpretations of quantum theories.  相似文献   

17.
It is shown that the Maxwell-Lorentz equations can be deduced from the law of Biot-Savart by simply performing some theoretical experimentations.  相似文献   

18.
The separability of the massive Dirac equation in the non-extreme Kerr geometry in horizon-penetrating advanced Eddington–Finkelstein-type coordinates is shown. To this end, Kerr geometry is described by a Carter tetrad and the Dirac spinors and matrices are given in a chiral Newman–Penrose dyad representation. Applying Chandrasekhar’s mode ansatz, the Dirac equation is separated into systems of radial and angular ordinary differential equations. Asymptotic radial solutions at infinity, the event horizon, and the Cauchy horizon are explicitly derived. Their decay is analyzed by means of error estimates. Moreover, the eigenfunctions and eigenvalues of the angular system are discussed. Finally, as an application, the scattering of Dirac waves by the gravitational field of a Kerr black hole is studied. This work provides the basis for a Hamiltonian formulation of the massive Dirac equation in Kerr geometry in horizon-penetrating coordinates and for the construction of a functional analytic integral representation of the Dirac propagator.  相似文献   

19.
This paper deals with the Darboux transformation for the Dirac equation with a scalar-type potential. Formulas are derived for the potential difference and for the solutions of the transformed equations. The relationship between the Darboux transforms for Dirac and Schrödinger equations is analyzed. New transparent potentials and a potential with a Coulomb asymptotics are obtained as examples.  相似文献   

20.
G. Breit's original paper of 1929 postulates the Breit equation as a correction to an earlier defective equation due to Eddington and Gaunt, containing a form of interaction suggested by Heisenberg and Pauli. We observe that manifestly covariant electromagnetic Two-Body Dirac equations previously obtained by us in the framework of Relativistic Constraint Mechanics reproduce the spectral results of the Breit equation but through an interaction structure that contains that of Eddington and Gaunt. By repeating for our equation the analysis that Breit used to demonstrate the superiority of his equation to that of Eddington and Gaunt, we show that the historically unfamiliar interaction structures of Two-Body Dirac equations (in Breit-like form) are just what is needed to correct the covariant Eddington Gaunt equation without resorting to Breit's version of retardation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号