首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
In this review we present a simple method of introducing stochastic and quantum metrics into gravitational theory at short distances in terms of small fluctuations around a classical background space-time. We consider only residual effects due to the stochastic (or quantum) theory of gravity and use a perturbative stochastization (or quantization) method. By using the general covariance and correspondence principles, we reconstruct the theory of gravitational, mechanical, electromagnetic, and quantum mechanical processes and tensor algebra in the space-time with stochastic and quantum metrics. Some consequences of the theory are also considered, in particular, it indicates that the value of the fundamental lengthl lies in the interval 10–23l10–22 cm.  相似文献   

2.
For an arbitrary potential V with classical trajectoriesx=g(t), we construct localized oscillating three-dimensional wave lumps (x, t,g) representing a single quantum particle. The crest of the envelope of the ripple follows the classical orbitg(t), slightly modified due to the potential V, and (x, t,g) satisfies the Schrödinger equation. The field energy, momentum, and angular momentum calculated as integrals over all space are equal to the particle energy, momentum, and angular momentum. The relation to coherent states and to Schrödinger waves is also discussed.  相似文献   

3.
4.
A quantum particle observed on a sufficiently large space-time scale can be described by means of classical particle trajectories. The joint distribution for large-scale multiple-time position and momentum measurements on a nonrelativistic quantum particle moving freely inR v is given by straight-line trajectories with probabilities determined by the initial momentum-space wavefunction. For large-scale toroidal and rectangular regions the trajectories are geodesics. In a uniform gravitational field the trajectories are parabolas. A quantum counting process on free particles is also considered and shown to converge in the large-space-time limit to a classical counting process for particles with straight-line trajectories. If the quantum particle interacts weakly with its environment, the classical particle trajectories may undergo random jumps. In the random potential model considered here, the quantum particle evolves according to a reversible unitary one-parameter group describing elastic scattering off static randomly distributed impurities (a quantum Lorentz gas). In the large-space-time weak-coupling limit a classical stochastic process is obtained with probability one and describes a classical particle moving with constant speed in straight lines between random jumps in direction. The process depends only on the ensemble value of the covariance of the random field and not on the sample field. The probability density in phase space associated with the classical stochastic process satisfies the linear Boltzmann equation for the classical Lorentz gas, which, in the limith0, goes over to the linear Landau equation. Our study of the quantum Lorentz gas is based on a perturbative expansion and, as in other studies of this system, the series can be controlled only for small values of the rescaled time and for Gaussian random fields. The discussion of classical particle trajectories for nonrelativistic particles on a macroscopic spacetime scale applies also to relativistic particles. The problem of the spatial localization of a relativistic particle is avoided by observing the particle on a sufficiently large space-time scale.  相似文献   

5.
An interrelation between the properties of the space-time structure near moving particles and their dynamics is discussed. It is suggested that the space-time metric near particles becomes a curved one depending on a random vectorb E =(b 4,b) with a distributionw(b E 2 /l 2); the averaged space-time metric over this distribution gives the general effect on particle behavior. As a result the particle motion in our scheme is described by a nonlinear equation. It turns out that the nonrelativistic limit of this equation gives a simple connection between the space-time structure at small distances and the dynamical behavior of particles. Different types of particle motion (nearly rectilinear, stochastic, and solitonlike) caused by some concrete forms of the averaged conformally flat space-time metric are considered.  相似文献   

6.
Introducing quantum space-time into physics by means of the transformation language of noncommuting coordinates gives a simple scheme of generalizing the tensor analysis. The general covariance principle for the quantum space-time case is discussed, within which one can obtain the covariant structure of basic tensor quantities and the motion equation for a particle in a gravitational field. Definitions of covariant derivatives and curvature are also generalized in the given case. It turns out that the covariant structure of the Riemann-Christoffel curvature tensor is not preserved in quantum space-time. However, if the curvature tensor v (z) is redetermined up to the value of theL 2 term, then its covariant structure is achieved, and it, in turn, allows us to reconstruct the Einstein equation in quantum space-time.  相似文献   

7.
In order to gain insight into the possible Ground State of Quantized Einstein's Gravity, we have derived a variational calculation of the energy of the quantum gravitational field in an open space, as measured by an asymptotic observer living in an asymptotically flat space-time. We find that for Quantum Gravity (QG) it is energetically favourable to perform its quantum fluctuations not upon flat space-time but around a "gas" of wormholes of mass m p, the Planck mass (m p 1019 GeV) and average distance l p, the Planck length a p(a p 10–33 cm). As a result, assuming such configuration to be a good approximation to the true Ground State of Quantum Gravity, space-time, the arena of physical reality, turns out to be well described by Wheeler's quantum foam and adequately modeled by a space-time lattice with lattice constant l p, the Planck lattice.  相似文献   

8.
A new semiclassical adiabatic invariance treatment of ion-molecule reactive collisions is proposed to investigate the influence of the molecular rotation on the cross-sections and rate constants at very low temperatures. Within the domain of validity of the adiabatic separation of the ion-molecule radial motion and the molecular rotation, the method is applicable to linear or symmetric-top molecules, for which the system is integrable. The correspondence principle is then used to partition the space of the classical action space into quantum bins, each of which corresponds to a specific quantum state. The procedure differs from the more usual Einstein-Brillouin-Keller (EBK) semiclassical quantization, where each quantum state is represented by a single point of action space. The results for the linear rigid rotor case, obtained using this modified semiclassical adiabatic invariance model, are in excellent agreement with the quantum mechanical methods, even for low rotational levels of the molecule, where the EBK semiclassical quantization fails.Received: 26 June 2003, Published online: 26 August 2003PACS: 34.50.Lf Chemical reactions, energy disposal, and angular distribution, as studied by atomic and molecular beams - 34.50.Pi State-to-state scattering analyses  相似文献   

9.
In the context of our recently developed emergent quantum mechanics, and, in particular, based on an assumed sub-quantum thermodynamics, the necessity of energy quantization as originally postulated by Max Planck is explained by means of purely classical physics. Moreover, under the same premises, also the energy spectrum of the quantum mechanical harmonic oscillator is derived. Essentially, Planck’s constant h is shown to be indicative of a particle’s “zitterbewegung” and thus of a fundamental angular momentum. The latter is identified with quantum mechanical spin, a residue of which is thus present even in the non-relativistic Schrödinger theory.  相似文献   

10.
We consider quantum field theoretical models inn dimensional space-time given by interaction densities which are bounded functions of an ultraviolet cut-off boson field. Using methods of euclidean Markov field theory and of classical statistical mechanics, we construct the infinite volume imaginary and real time Wightman functions as limits of the corresponding quantities for the space cut-off models. In the physical Hilbert space, the space-time translations are represented by strongly continuous unitary groups and the generator of time translationsH is positive and has a unique, simple lowest eigenvalue zero, with eigenvector , which is the unique state invariant under space-time translations. The imaginary time Wightman functions and the infinite volume vacuum energy density are given as analytic functions of the coupling constant. The Wightman functions have cluster properties also with respect to space translations.  相似文献   

11.
12.
A notion of quantum space-time is introduced, physically defined as the totality of all flows of quantum test particles in free fall. In quantum space-time the classical notion of deterministic inertial frames is replaced by that of stochastic frames marked by extended particles. The same particles are used both as markers of quantum space-time points as well as natural clocks, each species of quantum test particle thus providing a standard for space-time measurements. In the considered flat-space case, the fluctuations in coordinate values with respect to stochastic frames are described by coordinate probability amplitudes related to irreducible stochastic phase space representations of the Poincaré group. Lagrangian field theory on quantum space-time is formulated. The ensuing equations of motion for interacting fields contain no singularities in their nonlinear terms, and therefore can be handled by methods borrowed from classical nonlinear analysis.Supported in part by an NSERC grant.  相似文献   

13.
The classical wave-particle problem is resolved in accord with Newton's concept of the particle nature of light by associating particle density and flux with the classical wave energy density and flux. Point particles flowing along discrete trajectories yield interference and diffraction patterns, as illustrated by Young's double pinhole interference. Bound particle motion is prescribed by standing waves. Particle motion as a function of time is presented for the case of a particle in a box. Initial conditions uniquely determine the subsequent motion. Some discussion regarding quantum theory is preseted.  相似文献   

14.
This paper deals with the gravi-quantum mechanical interaction on the level of the first quantisation and in the framework of a metric theory of gravitation (no field quantisation). The interaction is introduced by embedding the quantum mechanics of the otherwise unaffected (i.e. free) spin-1/2 particle in the given curved space-time of the 3-flat expanding Robertson-Walker universe. The metric acts thereby as an external field. The corresponding Hilbert space formalism is established in interpreting the generally covariant theory of the Dirac field in the Riemann space in question as the Dirac representation of the spin-1/2 particle in the Schrödinger picture. The evolution operator is then extracted out of the general relativistic Dirac equation, while contractions of the symmetric energy momentum tensor with the tetrad vectors of the reference system lead to the operators of energy, linear momentum and total angular momentum. The temporal behaviour of the corresponding expectation values is calculated.  相似文献   

15.
According to both Dirac's and Kemmer's relativistic quantum theories, the eigenvalues of the velocity operator are +c and –c. This false result is avoided if certain alternative particle coordinates are adopted. Another advantage is that the new coordinates occur in additional constants of the motion. These are sui generis angular momenta obtained by taking the vector product of the nonstandard coordinates with the linear momentum. An additional virtue of the new velocity operator is that, like in classical mechanics, it is proportional to the linear momentum. Besides, the zeroth component of the new set of coordinates does not commute with the hamiltonian, which results in a genuine indeterminacy relation between time and energy.  相似文献   

16.
A quantum relativity theory formulated in terms of Davis' quantum relativity principle is outlined. The first task in this theory as in classical relativity theory is to model space-time, the arena of natural processes. It is shown that the quantum space-time models of Banai introduced in another paper is formulated in terms of Davis' quantum relativity. The recently proposed classical relativistic quantum theory of Prugoveki and his corresponding classical relativistic quantum model of space-time open the way to introduce, in a consistent way, the quantum space-time model (the quantum substitute of Minkowski space) of Banai proposed in the paper mentioned. The goal of quantum mechanics of quantum relativistic particles living in this model of space-time is to predict the rest mass system properties of classically relativistic (massive) quantum particles (elementary particles). The main new aspect of this quantum mechanics is that provides a true mass eigenvalue problem, and that the excited mass states of quantum relativistic particles can be interpreted as elementary particles. The question of field theory over quantum relativistic model of space-time is also discussed. Finally it is suggested that quarks should be considered as quantum relativistic particles.Supported by the Hungarian Academy of Sciences.  相似文献   

17.
The motion equations of diatomic molecules are here extended from the absolute vibrational case to a more general and real rotational and vibrational (rovibrational) case. The rovibrational Hamiltonian is heuristically formed by substituting the respective number and angular momentum operators for the vibrational and rotational quantum numbers in the energy eigenvalues of a diatomic molecule which was first introduced by Dunham. The motion equations of observable quantities such as the position and linear momentum are then determined by implementing the well-known Heisenberg relation in quantum mechanics. We face with the second-order imaginary differential equations for describing the temporal variations of the relative position and the linear momentum of two oscillating atoms, which are coupled in the xy horizontal plane. The possible rovibrational oscillations are distinguished by the three quantum numbers n, l and m associated with the energy and angular momentum quantities. It is finally demonstrated that the simultaneous solutions of rovibrational equations satisfy the energy conservation during all quantised oscillations of a diatomic molecule in space.  相似文献   

18.
The relation between wave mechanics and classical mechanics is reviewed, and it is stressed that the latter cannot be regarded as the limit of the former as 0. The motion of a classical particle (or ensemble of particles) is described by means of a Schrödinger-like equation that was found previously. A system of a quantum particle and a classical particle is investigated (1) for an interaction that leads to stationary states with discrete energies and (2) for an interaction that enables the classical particle to act as a measuring instrument for determining a physical variable of the quantum particle.  相似文献   

19.
We construct, in classical two-time physics, the necessary structure for the most general configuration space formulation of quantum mechanics containing gravity in d+2 dimensions. This structure is composed of a symmetric Riemannian metric tensor and of a vector field that defines a section of a flat U(1) bundle over space-time. This construction is possible because of the existence of a finite local scale invariance of the Hamiltonian and because two-time physics contains, at the classical level, a local generalization of the discrete duality symmetry between position and momentum that underlies the structure of quantum mechanics.  相似文献   

20.
Examples of equations of motion in classical relativistic mechanics are studied: the equations of motion of a charged spinning particle moving in a space-time (with or without torsion) in the presence of an electromagnetic field are derived via Souriau presymplectic reduction. Then, the extension of Souriaus ideas to Lagrangian field theory due to Witten, Crnkovi, Zuckerman is reviewed using the variational bicomplex, the basic properties of the Lund–Regge equations describing the motion of a string interacting with a scalar field and moving in Minkowski spacetime are recalled, and a symplectic structure for their space of solutions is found.This revised version was published online in April 2005. The publishing date was inserted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号