首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
Widely tunable, Fourier-transform-limited pulses of terahertz (THz) radiation have been generated using (i) crystals of the highly nonlinear organic salt 4-N,N-dimethylamino-4′-N′-methyl stilbazolium tosylate (DAST), (ii) zinc telluride (ZnTe) crystals, (iii) gallium phosphide (GaP) crystals, and (iv) low-temperature-grown gallium arsenide (LTG-GaAs) photomixers with THz spiral antennas. Outputs from two narrowband (Δν < 1 MHz, λ ∼ 800 nm) cw titanium-doped sapphire (Ti:Sa) ring lasers with a well-controlled frequency difference were shaped into pulses using acousto-optic modulators (AOM), coupled into an optical fiber, pulse amplified in Nd:YAG-pumped Ti:Sa crystals and used as optical sources to pump the THz emitters. The THz radiation was detected over a broad frequency range and its bandwidth was determined to be ∼10 MHz. The spectroscopic potential of the THz source is illustrated by the absorption spectrum of a pure rotational transition of OCS.  相似文献   

2.
We designed a narrow bandpass terahertz wave filter using photonic crystals with a line defect. An inserted linear defect in one-dimensional photonic crystal structures for a channeled filtering in the terahertz range are studied and designed theoretically. By using transfer matrix method, we examined the transmittance spectra for the proposed terahertz wave filter has a 3 dB transmission loss bandwidth of 20 MHz ranging from 0.29998 THz to 0.30001 THz. The simulated results show that a very narrow transmission band and high transmission (higher than 99.99%) centered at λ0, and very sharp edges can be achieved.  相似文献   

3.
We investigate the potential of n-stage optical finite impulse response (FIR) lattice filter for compensating first order polarization mode dispersion (PMD). This compensation is based on minimizing the differential group delay (DGD) between the two principal state of polarization (PSP) within a given frequency range. The filter is realized by concatenating optical delay lines, directional couplers, and phase shifters in a lattice architecture. A numerical simulation is performed for an 8th and 12th order filters to demonstrate the impact of using higher order filters. The results show that DGD can be reduced significantly as we increase the order of the filter.  相似文献   

4.
In this paper, a thermally tunable EDFA gain equalizer filter based on point symmetric cascaded Mach-Zehnder (CMZ) filter based two mode interference (TMI) coupler is presented with its mathematical model. Transmission characteristics of these CMZ couplers are analyzed and compared with Y symmetric CMZ couplers by using this model. For EDFA gain equalizer, point symmetric CMZ circuit is chosen due to its higher wavelength flattening width than Y symmetric CMZ circuit. The ripples of equalized EDFA gain spectrum are formulated and estimated from the equalized gain spectrum of point symmetric CMZ filters. It is found that 2 stage point symmetric CMZ coupler with binomial coupler distribution (2PB CMZ) using Δn = 5% provides gain equalized width of 35 nm with ripple of 0.4-0.6 dB and bending loss of 0.24 dB and device length is ∼15 times lower than that of the existing EDFA gain equalizer based CMZ filter. It is also seen that if during the fabrication process, waveguide core width w is increased or decreased by 0.1 μm (in percentage ∼±6.6%), the power imbalance of TMI based 2PB CMZ filter is slightly increased by ∼8% in comparison to that based on directional coupler (DC) by 40%. Low power thermooptic structure of varying gap between two waveguide cores with silicon trench just below the heater is used and it requires ∼1.5 times less heating power than the conventional structure for thermal tuning of EDFA gain equalization.  相似文献   

5.
Terahertz (THz) dichroism of a nematic liquid N-(p-methoxybenzylidene)-p-butylaniline (MBBA) was measured using a GaP Raman THz spectrometer. MBBA on a rubbed plastic substrate generates a band at around 4.0 THz: its liquid crystal phase shows strong dichroism, which well corresponds to that of the IR absorption caused by π(CH) of MBBA molecule reported in the literature. Based on inferences drawn from the present THz and the published IR dichroic results, the 4.0 THz band probably stems from lateral intermolecular or intramolecular interactions of MBBA molecules aligned to the rubbing direction. The results clearly demonstrate that THz spectroscopy is powerful for discussing of phase transition and dichroism of liquid crystals.  相似文献   

6.
A novel synthesis algorithm for multi-channel (M?2) lattice form optical delay-line circuit is presented in this paper. This circuit offers multi-port FIR optical filter with delay time of N Δττ: unit delay time). Synthesis algorithm is based on division of total transfer matrix into unit blocks. Developed method confirms that 1×M optical delay-line circuit offers same transmission characteristics as 1×M FIR digital filter. Band-pass flat group delay type filter is considered as an example in this paper. It is also confirmed that proposed delay-line circuit can realize 100% power transmittance.  相似文献   

7.
Widely tunable terahertz (THz) waves were successfully generated from 0.5 to 10 THz via difference frequency generation (DFG) in a configurationally locked polyene 2-[3-(4-hydroxystyryl)-5,5-dimethylcyclohex-2-enylidene] malononitrile (OH1) crystal. Potassium titanium oxide phosphate optical parametric oscillator pumped by nanosecond Q-switched Nd:YAG laser was used to generate two waves, which were then used to irradiate OH1 crystal. The maximum energy of the generated THz wave was about 461 pJ/pulse. We investigated the dependency of generated THz energy to the excitation pump power density and OH1 crystal thickness. In addition, we compared the THz energy generated by OH1 crystal to 4-N,N-dimethylamino-4′-N′-methyl-4-stilbazolium tosylate (DAST) crystal using DFG, and we achieved 560 times higher energy using OH1 crystal than DAST crystal at around 1.1 THz.  相似文献   

8.
The operation of a passively modelocked figure-eight laser with all fibre repetition rate multiplier is reported. Thirty two times the fundamental repetition rate is achieved with six conventional 3 dB couplers at a repetition rate of 182 MHz. The repetition rate 2N times multiplication only requires (N + 1) passive fibre couplers and N fibre delay-lines. This method makes it possible to achieve high multiplication and is inexpensive when compared with conventional methods employing sub-ring cavity or special fibre Bragg grating to control repetition rate.  相似文献   

9.
The dynamic tunability of a terahertz(THz) passband filter was realized by changing the Fermi energy(E_F) of graphene based on the sandwiched structure of metal-graphene-metal metamaterials(MGMs). By using plane wave simulation, we demonstrated that the central frequency( f_0) of the proposed filter can shift from 5.04 THz to 5.71 THz; this shift is accompanied by a 3 dB bandwidth(? f) decrease from 1.82 THz to 0.01 THz as the EFincreases from 0 to 0.75 eV.Additionally, in order to select a suitable control equation for the proposed filter, the curves of ? f and f_0 under different graphene EFwere fitted using five different mathematical models. The fitting results demonstrate that the Dose Resp model offers accurate predictions of the change in the 3 dB bandwidth, and the Quartic model can successfully describe the variation in the center frequency of the proposed filter. Moreover, the electric field and current density analyses show that the dynamic tuning property of the proposed filter is mainly caused by the competition of two coupling effects at different graphene EF, i.e., graphene-polyimide coupling and graphene-metal coupling. This study shows that the proposed structures are promising for realizing dynamically tunable filters in innovative THz communication systems.  相似文献   

10.
We obtained a frequency tunable, low-coherence, picosecond, terahertz (THz) output with a high repetition rate from a picosecond Nd:YVO4 bounce laser in combination with tandem periodically poled stoichiometric lithium tantalate and 4′-dimethylamino-N-methyl-4-stilbazolium tosylate crystals. The frequency of the THz output was tunable in the range 2.1–7.1 THz with a linewidth of ~3.5 THz at 2.2 THz. The THz output had a maximum peak power of ~180 mW and an average power of ~0.65 μW at 3.9 THz. This system has the potential to realize ultra-high speed, THz coherence tomography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号