首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
In this study, we present theoretical and experimental analyses on the waveguide mode properties of prism-coupled Au:SiO2 nanocomposite films with the near infrared laser of 1550 nm wavelength where the optical absorption diminished enough for the generation of guided mode. The evolution of guided mode in the nanocomposite waveguide and its propagation properties were also evaluated. As an effective way of utilizing the surface plasmon resonance properties for the application to optical switching devices, we employed an attenuated total internal reflection type optical switch geometry and tested its effectiveness for the absorptive opto-functional materials system using a cross-modulation technique with 532-nm pump and 1550-nm probe beams. The index change probe beam experiences was found to be purely refractive in nature and negative in sign, presumably due to the photo-thermal effect induced in the nanocomposite film by the irradiation of pump beam.  相似文献   

2.
Parag Sharma 《Optik》2010,121(4):384-388
Nonlinear absorption based photonic switching of probe laser beam transmissions at 640 and 410 nm, respectively, by the nanosecond pump pulses at 570 nm, in bacteriorhodopsin (bR) protein molecules, has been analyzed theoretically using rate equation approach. The speed of digital operation in bR-based photonic switch is shown to be enhanced from earlier reported kHz to MHz. Further, the switching response is shown to be improved by biasing the sample with an additional laser beam at 410 nm. The technique can directly be applied to other rhodopsin proteins with similar photocycle to perform fast switching. Analyses demonstrate the utility of slow photochromic materials, having some energy states with fast relaxation rate, to perform fast photonic switching.  相似文献   

3.
Sukhdev Roy  Parag Sharma 《Optik》2008,119(4):192-202
We present a detailed steady-state and time-dependent theoretical analysis of all-optical light modulation in the recently discovered, wild-type proteorhodopsin (WTpR) protein molecules based on excited-state absorption. Amplitude modulation of cw probe laser beam transmissions at 520, 405, 555 and 560 nm, corresponding to the peak absorption of pR, pRM, pRK and pRN intermediate states of pR photocycle, respectively, by cw and pulsed modulating pump laser beam at 520 nm have been analyzed. The effect of various spectral and kinetic parameters on modulation characteristics has been studied. There is an optimum value of concentration for a given pump intensity value for which maximum modulation of the probe beam can be achieved. The switching characteristics of probe beam at 405 and 520 nm exhibit dip and peak, respectively, which can be removed by decreasing the absorption of pRM state at 520 nm. The modulation in WTpR is at lower pump powers with smaller contrast in comparison to WT bacteriorhodopsin (bR) and WT pharaonis phoborhodopsin (ppR). The modulation characteristics exhibit unique features compared to bR and ppR.  相似文献   

4.
C.P. Singh  Sukhdev Roy 《Optik》2006,117(11):499-504
We have theoretically analyzed all-optical switching in Pt:ethynyl complex based on nonlinear excited-state absorption. A detailed analysis for Pt:ethynyl complex has been presented based on rate equation approach. It is shown that a pulsed pump laser beam at 355 nm switches the transmission of a cw probe laser beam at 633 nm through a Pt:ethynyl sample. The effect of various parameters, such as pump pulse width, peak pumping intensity, normalized parameter , transition times of S1→S0 and S1→T1 states and lifetime of triplet state, on switching characteristics has been analyzed in detail. It has been shown that the probe beam can be completely switched off (i.e. 100% modulation) by a pulsed pump laser beam at 50 kW/cm2. These results have been used to design all-optical NOT and the universal NOR and NAND logic gates with multiple pump laser pulses.  相似文献   

5.
Based on the rate equation of Nd3+-doped quasi-three-level lasers, a theoretical model of diode-end-pumped continuous-wave 912 nm Nd:GdVO4 laser is presented. Lasing threshold and slope efficiency considering reabsorption effect are calculated and analyzed. It is found that the output performance of 912 nm laser operating at room temperature is influenced remarkably by the reabsorption loss and spatial distribution of the pump beam and laser beam. In experiments, the output power and average slope efficiency of 912 nm laser were investigated under different conditions. After optimization at the parameters of laser medium, working temperature and spatial distribution of the pump beam, up to 16.2 W continuous-wave 912 nm laser output was obtained at incident pump power of 67.0 W, with an average slope efficiency of 41.7%, to the best of our knowledge, this is the highest output power of diode-pumped 912 nm Nd:GdVO4 laser by far.  相似文献   

6.
We report on the generation of high average power, high repetition rate, and picosecond (ps) deep-ultraviolet (DUV) 177.3 nm laser. The DUV laser is produced by second-harmonic generation of a frequency-tripled mode-locked Nd: YVO4 laser (<15 ps, 80 MHz) with KBBF nonlinear crystal. The influence of different fundamental beam diameters on DUV output power and KBBF-SHG conversion efficiency are investigated. Under the 355 nm pump power of 7.5 W with beam diameter of 145 μm, 41 mW DUV output at 177.3 nm is obtained. To our knowledge, this is the highest average power for the 177.3 nm laser. Our results provide a power scaling by three times with respect to previous best works.  相似文献   

7.
Laser-induced backside dry etching (LIBDE) is a promising technique for micro- and nanomachining of transparent materials. Although several experiments have already proved the suitability and effectiveness of the technique, there are several open questions concerning the etching mechanism and the concomitant processes. In this paper time-resolved light transmission investigations of etching process of fused silica are presented. 125 nm thick silver coating was irradiated through the carrying 1 mm thick fused silica plate by single pulses of a nanosecond KrF excimer laser. The applied fluences were 0.38, 0.71 and 1 J/cm2. During the etching process the irradiated spots were illuminated by an electronically delayed nitrogen laser pumped dye laser. The delay between the pump and probe pulses was varied in the range of 0 ns and 20 μs. It was found that the transmitted probe beam intensity strongly depends on the applied delays and fluences. Scanning electron microscopy and energy dispersive X-ray spectrometry of the etched surface showed the existence of silver droplets and fragments on the illuminated surfaces and silver atoms built into the treated surface layer influencing the transmission behavior of the studied samples.  相似文献   

8.
We present some experimental results on tunable sum-frequency generation in a periodically poled lithium-niobate waveguide using a multi-wavelength fiber laser pump stabilized by a nonlinear optical loop mirror. We are able to up-convert to about 629 nm a continuous-wave infrared signal varying from 1497 nm to 1525 nm. Such a wideband conversion efficiency is ensured by the multiple spectral components of the laser pump, which is controlled by an adjustable Fabry-Perot filter. Potential applications, in particular for stellar imaging, are discussed.  相似文献   

9.
We demonstrate narrow band optical filter like frequency response with full width half maximum (FWHM) of nearly (1.75 ± 0.25) Hz in fluorescein doped boric acid glass films [10−4 M], using modulated optical phase conjugation and a nearly non-degenerate four wave mixing technique. Modulated optical phase conjugation signals are described in the limit of a weak probe and relatively strong pump beams. Both pump beams are of nearly equal intensity at a wavelength of 514.5 nm from a continuous-wave Ar+ laser. The probe beam frequency has been detuned with a ramp signal using a piezo electric mirror.  相似文献   

10.
《Current Applied Physics》2003,3(2-3):163-169
All-optical logic gates with bacteriorhodopsin (bR) protein molecules have been demonstrated based on all-optical switching of a cw probe laser beam by multiple pulsed pump laser beams due to nonlinear intensity-induced excited-state absorption. A cw probe laser beam at 640 nm corresponding to the peak absorption of O-state in the bR photocycle is switched by a pulsed pump laser beam at 570 nm corresponding to the maximum initial B state absorption, at relatively low powers. The switching characteristics have been used to design all-optical NOT and the universal NOR and NAND logic gates and the effect of various parameters such as variation in pump pulse width, pump intensity, lifetime of O state and absorption cross-section of the B state at probe wavelength on the switching characteristics has been analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号