首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We propose and demonstrate a novel tunable and switchable all-fiber comb filter by employing a polarization beam splitter (PBS)-based two-stage cascaded Mach-Zehnder (M-Z) interferometer. The proposed comb filter consists of a rotatable polarizer, a fiber PBS, a non-3-dB coupler and a 3-dB coupler. By simply adjusting the polarization state of the input light, the dual-function of channel spacing tunable and wavelength switchable (interleaving) operations can be efficiently obtained. The theoretical analysis is verified by the experimental results. A comb filter with both the channel spacing tunable from 0.18 nm to 0.36 nm and the wavelength switchable functions is experimentally demonstrated.  相似文献   

2.
We propose and experimentally demonstrate switchable and tunable transmission characteristics of a Mach–Zehnder interferometer comb filter based on thermal operation. Its temperature characteristics are investigated to reveal a shift in the peak wavelength position from 0.003 to 0.004 nm/°C and a tunable range of wavelength spacing of 0.76–0.90 nm for maximum and minimum effective lengths, respectively. This configuration provides the unique advantages of an all-fiber structure, tunable wavelength spacing, switchable spectral peaks, independent tuning of the center wavelength and wavelength spacing of the spectral peaks, and low polarization sensitivity. It is relatively simple to fabricate and expected to have applications in temperature fiber optic sensors and multiwavelength fiber laser sources.  相似文献   

3.
We have demonstrated a tunable multiwavelength self-seeded Brillouin-erbium fiber laser (BEFL) without externally Brillouin pumping. In this scheme, the stable multiwavelength comb can be produced within a ∼45-nm wavelength tuning range through adjusting the polarization controllers (PCs) in a high-birefringent Sagnac loop mirror. The generation of ∼200-line Stokes comb has been achieved by adjusting PCs under bidirectional pumping of two laser diodes, which is the largest wavelength number to the best of our knowledge. The effect of 980 nm pump power on the multiwavelength generation was also investigated.  相似文献   

4.
We demonstrate a multiwavelength fiber laser with ultradense wavelength spacing and ultrabroad bandwidth based on inhomogeneous loss mechanism with assistance of nonlinear polarization rotation. The inhomogeneous loss, implemented by incorporating a section of highly nonlinear fiber (HNLF) and a Sagnac filter in the laser cavity, can balance mode competition in erbium-doped fiber and result in ultradense multiwavelength generation. The bandwidth of the multiwavelength spectrum is greatly broadened owing to the intensity-dependent loss induced by nonlinear polarization rotation. Stable multiwavelength lasing with wavelength spacing of 0.08 nm and wavelength number up to 254 is achieved at room temperature. Moreover, multiwavelength tuning is realized through modifying polarization-dependent cavity loss.  相似文献   

5.
We present a multi-wavelength mode-locked fiber ring laser incorporating a semiconductor optical amplifier (SOA) and a Fabry-Perot semiconductor optical amplifier (FP-SOA). Because the gain of the SOA is depleted by an external injection optical signal, the SOA acts as a loss modulator. The FP-SOA serves as a tunable comb filter. The presented laser source can generate 19 synchronized wavelength channels with the extinction ratio of about 21 dB, each mode-locked at 10 GHz, and mode-locked pulse width is about 40 ps. Oscillation wavelengths band can be tuned by adjusting the bias current of the SOA, and wavelength spacing also can be changed by using a tunable optical delay line (ODL) or a temperature controller. The polarization-insensitive devices ensure that the output power is rather stable. This fiber laser has potential applications in longer waveband (L-band) within the low-attenuation window.  相似文献   

6.
In the paper, a ring double-Brillouin-frequency spaced multi-wavelength Brillouin erbium-doped fiber laser based on non-linear amplified fiber loop mirror filter is demonstrated, in which the non-linear amplified fiber loop mirror (AFLMF) is used as a filter. At the 980 nm pump power of 10.29 dBm, the tunable laser source center wavelength of 1563 nm and power of −3 dBm, up to 12 even output channels with 0.16 nm spacing are achieved. At the same time, we study the influence of 980 nm pump power, the polarization controller and the tunable laser source center wavelength on the number of Stokes light wave.  相似文献   

7.
Zhang  X. L.  Zhou  K. J.  Luo  Y. X. 《Laser Physics》2011,21(10):1825-1828
In this paper, we propose and experimentally demonstrate a novel wavelength tunable fiber ring laser source for a photonic beamforming system to control phased-array antenna. In this fabrication, a Sagnac loop composed of a polarization-maintaining (PM) coupler and a piece of high-birefringence (Hi-Bi) PM fiber is acted as a comb filter to make the frequency spacing equal. The wavelength of the output signal is controlled by the tunable filter outside the Sagnac loop. The intensities of the output signals with different wavelengths increased or decreased at the same frequency spacing are equal. A five-channel true-time delay system consisting of this tunable fiber source and five grating delay lines for discrete beamsteering has been demonstrated. In the experiment, the output signals of the tunable fiber ring with the equal frequency spacing have the same intensity of about 5.9 dBm and the same high signal to noise ratio (SNR) of 40 dB. If the tunable filter in this laser is replaced by a micro-electro-mechanical systems (MEMS) tunable filter, the speed of switching wavelength will increase rapidly.  相似文献   

8.
Ngo NQ  Liu D  Tjin SC  Dong X  Shum P 《Optics letters》2005,30(22):2994-2996
We propose and experimentally demonstrate a novel switchable and discretely tunable comb filter based on a thermally induced linearly chirped fiber Bragg grating. Experimentally we achieved a thermally induced optical bandpass filter that has eight switchable passband peaks with peak separations of 1.6 and 3.2 nm, a very narrow bandwidth (as small as 10 pm) of each peak, a tunable range of 16.5 nm, and a greater than 25 dB rejection ratio. Two spectral peaks separated by only 0.8 nm were also obtained with this comb filter. This filter provides the unique advantages of an all-fiber structure, switchable spectral peaks, independent tuning of the center wavelength and wavelength spacing of the spectral peaks, low polarization sensitivity, simple structure, ease of fabrication, and low cost.  相似文献   

9.
Optimization of Brillouin pump (BP) wavelength location on tunable multiwavelength Brillouin-erbium fiber laser (BEFL) with BP pre-amplified technique is experimentally investigated. The tunable multiwavelength BEFL is achieved by utilization a tunable band-pass filter in a laser cavity. The optimum BP power and BP wavelength location within the filter bandwidth is determined in order to obtain the maximum stable output channels. Optimum distance of launching the BP wavelength is found at 0.80 nm shorter from the center wavelength of the filter bandwidth. 15 stable output channels are achieved from the tunable fiber laser system within the optimum range of BP power which is found to be between 5.2 to 5.7 dBm.  相似文献   

10.
D. Liu  N.Q. Ngo  D. Liu 《Optics Communications》2009,282(8):1598-5360
We experimentally demonstrated a new structure of a multiwavelength semiconductor optical amplifier (SOA) ring laser based on a fiber Sagnac loop filter that can generate up to 25 stable output lasing wavelengths at room temperature. By varying the length of a polarization-maintaining (PM) fiber within the Sagnac loop filter, the wavelength spacing between the output lasing wavelengths can be changed to a desired value. By tuning a polarization controller (PC) within the Sagnac loop filter, stable multiwavelength 1550-nm operation with up to 17 lasing lines within 3 dB power level variation and with a wavelength spacing of ∼0.8 nm was achieved. The optical signal-to-noise ratios (OSNRs) of all the lasing wavelengths are greater than 40 dB.  相似文献   

11.
We demonstrate a continuously wavelength-spacing-tunable and high-power multiwavelength fiber optical parametric oscillator based on the multiwavelength idler-output technique. The laser cavity for multiwavelength idler outputs is constructed by a pumped highly-nonlinear dispersion-shifted fiber as parametric gain medium, two highly-reflective chirped fiber Bragg gratings (CFBGs) and a superimposed CFBG as comb-like filter. At a pump power of 1.1 W, the idler output of 10 wavelengths around 1.56 μm is achieved with a wavelength spacing of 0.39 nm. The wavelength spacing can be continuously tuned from 0.39 to 1.0 nm by utilizing a cantilever beam-based chirp tuning method to change the FSR of the superimposed CFBG. Our experimental results show that the designed multiwavelength idler-output scheme can significantly increase the multiwavelength output power with a total output power of 98 mW and each idler-channel power of 16.3 mW.  相似文献   

12.
A novel configuration of the tunable fiber laser with uniform wavelength spacing in dense wavelength division multiplexing (DWDM) application is proposed. The ring type tunable fiber laser consists of an all-fiber comb filter which determines the wavelength spacing, and a piece of adjustable fiber grating to select the discrete lasing wavelength for WDM application. The proposed all-fiber ring type tunable laser has potential application in the DWDM and other optical systems due to its advantages such as narrow linewidth, easy tuning, uniform wavelength interval, etc..  相似文献   

13.
We experimentally demonstrate a simple-structure but efficient multiwavelength erbium-doped fiber laser based on nonlinear polarization rotation assisted by four-wave-mixing (FWM). Based on the combination of these two nonlinear mechanisms contributing to intensity-dependent loss to alleviate mode competition, the stable multiwavelength operation at room temperature can be realized in a length of dispersion-shifted fiber. We achieved up to 38-wavelength generation with a spacing of ∼0.4 nm in the laser. In addition, through tuning the birefringence fiber filter, the lasing wavelength can be accurately tuned in the free spectrum range.  相似文献   

14.
A. P. Luo  Z. C. Luo  W. C. Xu 《Laser Physics》2010,20(9):1814-1817
A novel wavelength switchable all-fiber comb filter based on a dual-pass Mach-Zehnder (M-Z) interferometer is proposed and demonstrated. The proposed filter consists of a rotatable polarizer and a standard dual-pass M-Z interferometer composed of two 3-dB fiber couplers with a polarization controller (PC) in one arm. When the PC is properly set, the wavelength switchable operation is achieved by adjusting the polarization state of the input light. Theoretical calculation is verified by the experimental results. As applications, the proposed comb filter is incorporated into a fiber ring laser to generate wavelength switchable multiwavelength lasing.  相似文献   

15.
A multiwavelength fiber ring laser comprising of a Lyot filter and hybrid gain medium is presented. A wavelength channel spacing of 100 GHz is achieved by appropriate tuning of the Lyot filter length. Four wavelength channels are simultaneously mode-locked at 10 GHz using an electroabsorption modulator. We highlight how the intra-cavity modulator can affect the stability of the mode-locked laser spectrum when used in conjunction with a Lyot filter. We show that, due its reduced polarization sensitivity, an electroabsorption modulator significantly improves the stability of the mode-locked laser spectrum when compared to using a Mach-Zehnder modulator.  相似文献   

16.
K. Hu  Y. Wei  B. Sun  T. Wang  D. Chen 《Laser Physics》2012,22(12):1842-1846
We experimentally demonstrate a flexibly switchable multi-wavelength fiber optical parametric oscillator (MW-FOPO) by employing a highly nonlinear dispersion-shifted fiber (HNL-DSF) as the gain medium and a Lyot-Sagnac fiber ring as the comb filter. The wavelength spacing and the number of channels in the switchable MW-FOPO are adjustable by controlling the effective length of polarization maintaining fiber (PMF) segments in the intracavity Lyot-Sagnac filter. We achieve 36 lasing channels with 0.5 nm-spacing and 22 lasing channels with 0.8 nm-spacing in a wavelength range from 1541 to 1559 nm at room temperature. A comparison of the output spectra between the dual-pump MW-FOPO and single-pump MW-FOPO is presented as well.  相似文献   

17.
In this paper, the mixed-cascaded Raman scattering has been developed to investigate multiwavelength phosphosilicate Raman fiber lasers (MRFLs). With a tunable Yb3+-doped double-clad fiber laser (YDCFL) as the Raman pump source, we propose a compact and waveband-switchable (from the O- to U-band) MRFL using two- or three-mixed-cascaded Raman scattering of both SiO2/GeO2 and P2O5 in a P-doped fiber. We also confirm experimentally the feasibility of the proposed mixed-cascaded MRFL. When a 1064 nm YDCFL was used to pump a spool of 1-km P-doped fiber, the compact linear-cavity MRFLs in the O- and L-band operation were obtained, respectively, based on the two- and three-mixed cascaded Raman scattering. Up to 16-wavelength stable oscillation around 1320 nm has been observed with a spacing of 0.40 nm and an extinction ratio >30 dB. 12 lasing lines around 1601 nm have also been achieved with a spacing of 0.58 nm. The multiwavelength output powers as high as 108 and 138 mW were obtained in the O- and L-band operations, respectively. The wavelength spacing of the MRFLs is flexibly adjustable, and the peak wavelength of each lasing line is continuously tunable over the wavelength spacing. In addition, the important characteristics of the mixed-cascaded MRFLs, including the linewidth broadening, the signal-to-noise ratio and the conversion efficiency, are discussed.  相似文献   

18.
We propose and experimentally demonstrate a dual-pass unbalanced in-line Sagnac interferometer as a novel comb filter for implements in erbium-doped fiber lasers to obtain wide wavebands of multiwavelength radiations with enhancements of signal-to-noise ratios (SNRs). The hybrid combinations of the comb filter with the two schemes of nonlinear polarization rotation and intensity dependent loss have successfully not only enlarged the lasing bandwidth up to 47 nm but also enhanced the SNR up to 40 dB. The simultaneous lasing-wavelengths of 117 channels are also obtained. The multiwavelength lasing spectra with free spectral range of 0.4 nm covering the full L-band are useful for the applications of DWDM and WDM-PON systems.  相似文献   

19.
A dual mode multi-section gain-coupled distributed feedback laser with tunable mode spacing is subharmonically injection locked at 0.315 THz. The injected signal consists of an optical comb with harmonics 35 GHz apart and a bandwidth of approximately 1.9 THz. The optical comb is a result of strong four-wave mixing in a highly-nonlinear dispersion-shifted fiber. In order to observe locking of the multi-section laser, the output is optically downconverted to RF frequencies using the same optical comb. The locked multi-section DFB laser is a coherent and tunable optical source suitable for continuous-wave terahertz generation systems.  相似文献   

20.
Han YG  Tran TV  Lee SB 《Optics letters》2006,31(6):697-699
We experimentally demonstrate a wavelength-spacing tunable multiwavelength erbium-doped fiber laser based on degenerate four-wave mixing in a dispersion-shifted fiber incorporating multiple-fiber Bragg gratings. We have achieved stable operation of the multiwavelength erbium-doped fiber laser, which has 0.8 nm spacing ten-channel lasing wavelengths and a high extinction ratio of more than approximately 45 dB, at room temperature. The output power of the multiwavelength erbium-doped fiber laser is stable, so the peak fluctuation is less than approximately 0.2 dB. By changing the properties such as loss and polarization state of multiple fiber Bragg grating cavities, we can exercise flexible control of the wavelength spacing of the multiwavelength output. We can also obtain switchable multiwavelength lasing operation by elimination of the effects of alternate single-fiber Bragg gratings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号