首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 109 毫秒
1.
内周天线CP43、CP47中β-Car到Chla分子间的能量传递   总被引:7,自引:3,他引:4  
采用超快荧光光谱动力学对从菠菜中分离纯化的内周天线CP43、CP47进行研究,获取了它们的动力学三维荧光谱,CP43的荧光光谱范围为640~780nm,最大峰位于680nm处,在该峰值处的荧光寿命约为3.54ns;CP47的荧光光谱范围为630~775nm,最大峰位于691nm处,在该峰值处的荧光寿命约为3.22ns,在CP43和CP47中,Chla分子发射荧光的效率分别约为38.3%和40.6%.依据分子的退激发途径,我们分析认为在CP43、CP47中β-Car→Chla分子的能量传递速率常量分别为9.06×1011s-1,1.3×1012s-1;能量传递效率分别为47.5%、66.5%;并估计β-Car分子与Chla分子外周之间的距离分别为0.110nm、0.085nm.  相似文献   

2.
光系统Ⅱ荧光特性快速扫描成象光谱技术研究   总被引:9,自引:4,他引:5  
本文以菠菜(Spinica oleracea L.)叶绿体中的PS颗粒复合物、CP47、CP43和LHC为材料,对其结构和功能关系进行了分析,用扫描成象光谱技术对这四种样品的光谱特性进行了研究,并通过对其荧光发射光谱图象的处理,得到它们的荧光发射光谱曲线.分析结果表明,PS颗粒复合物的荧光发射光谱中心波长在680.1nm,波段的范围较宽;CP43荧光光谱的中心波长位于680nm,并在近红外区观察到振动小峰;CP47荧光光谱的中心波长在691.3nm处;CP47和CP43在短波长区640nm和长波长区720nm附近分别出现肩峰,推测可能是样品中游离的叶绿素a和叶绿素b分子引起;LCH荧光发射光谱的峰值位于678nm,光谱范围为576nm~780nm.  相似文献   

3.
核心天线CP43、CP47的荧光光谱特性   总被引:1,自引:0,他引:1  
采用快速扫描成象光谱技术对核心天线CP43和CP47的荧光光谱特性进行研究,获取了它们的积分荧光谱,通过积分荧光谱的组分光谱解析,并结合吸收光谱分析认为CP43和CP47具有这样的Chla的光谱特性,CP43:Chla660662.43、Chla669670.23、Chla682684.02,CP47:Chla660664.91、Chla669671.71、Chla680681.35、(Chlaae,a代表吸收峰;e代表发射峰);另外长波长组分694.86nm、702.34nm(CP43)、696.02nm(CP47)可能是由吸收>690nm的Chla分子所产生;CP43与CP47相比还存在有Chla675676.32,但是还没有看到CP43具有675nm吸收谱带的报道.对CP43和CP47的荧光光谱分析,认为CP47中的Chla669nm分子团和Chla680nm分子团间的能量传递比CP43中Chla669nm和Chla682nm分子团的能量传递更为有效;β-Car与Chla分子结合状态在CP47中要比CP43中紧密.  相似文献   

4.
CCD皮秒扫描成象对光系统发射光谱研究   总被引:2,自引:2,他引:0  
采用82MHz、514.5nm的Ar+激励光源,通过我们所建立的CCD皮秒扫描成象发射光谱装置分别对PSⅡ颗粒,内周天线CP43、CP47,外周天线LHCⅡ四种样品的发射光谱进行扫描成象,直接、快速地获得了它们的发射光谱曲线.通过分析认为,PSⅡ的发射荧光很大程度上是由内周天线CP47中的叶绿素a所发出的.  相似文献   

5.
采用 8 2 MHz、51 4.5nm的 Ar 激励光源 ,通过我们所建立的 CCD皮秒扫描成象发射光谱装置分别对 PS 颗粒 ,内周天线 CP43、CP47,外周天线 LHC 四种样品的发射光谱进行扫描成象 ,直接、快速地获得了它们的发射光谱曲线 .通过分析认为 ,PS 的发射荧光很大程度上是由内周天线 CP47中的叶绿素 a所发出的  相似文献   

6.
光系统Ⅱ核心天线CP47热稳定性的荧光动力学   总被引:4,自引:2,他引:2  
采用激励光源为4MHz、514.5nm的分幅扫描单光子计数荧光装置对从菠菜中分离提纯的核心天线CP47的热稳定性进行研究,得到经20℃、42℃和48℃处理后的动力学三维荧光谱.它们在最大峰值处的时间常量及其chla分子发射荧光的效率分别为:20℃:2.849ns(43.60%),4.024ns(35.37%);42℃:2.107ns(51.11%),3.657ns(37.59%);48℃:3.801ns(36.69%),4.0149ns(34.68%).因此,在CP47中存在有2组处于不同聚合状态的chla分子,3个处理温度中较短的时间组分属于2组中处于同一种聚合状态色素分子之间chla→chla→chla基态的能量传递时间,较长的时间组分属于2组处于不同聚合状态色素分子之间chla→chla→chla基态的能量传递时间.CP47中,20℃~42℃之间的温度对蛋白质空间结构的影响较小,与蛋白质结合的2种结合状态的chla分子之间的空间位置改变也较少.而42℃~48℃之间的温度引起较大的蛋白质空间结构和与蛋白质结合的2种结合状态的chla分子之间的空间位置改变.  相似文献   

7.
光系统ⅡChl分子能量传递超快光谱动力学   总被引:1,自引:1,他引:0  
利用ICCD飞秒扫描成象和飞秒时间分辨光谱装置实验研究了高等植物捕光天线LHCⅡ三聚体和PSⅡ颗粒复合物的超快光谱动力学,经过吸收光谱和发射光谱分析,确定在LHCⅡ三聚体中至少存在7种Chl分子光谱特性,分别是Chlb658.7653/656、Chla665.2662.0、Chla/b671.1670/671、Chla677.1675.0、Chla682.9680/681、Chla689.1685.0和Chla695.6695.0.采用光强1013光子/cm2/脉冲激励浓度为30μg/mL的捕光天线LHCⅡ三聚体,在650nm到705nm谱段逐点探测分析处理,产生了2组短寿命组分210fs、520fs和5.2ps、36.7ps及2个长寿命组分1.8ns、2ns.最快的3个寿命210fs、520fs和5.2ps反映了三聚体Chlb分子向Chla分子的激发能传递过程;寿命36.7ps反映了Chla分子向相邻单体Chla分子的激发能传递过程;最长的2个寿命1.8ns和2ns是在三聚体中Chla分子通过中间体Chla分子辐射荧光,分别跃迁回基态的过程.获得的6个寿命组分有把激发能传递时间与Chla/b分子发射光谱相结合的特点.经拟合处理解析PSⅡ颗粒复合物光谱,得到3个组分谱,其峰值分别为686.8nm、692.2nm和694.9nm,与LHCⅡ比较分析,说明天然构型的PSⅡ有很强的吸收光能和有效传递光能的本领.  相似文献   

8.
对CP43进行不同温度处理5分钟,采用锁模Ar^ 激光器输出的514.5nm的皮秒光脉冲作为激励光,通过探测CP43的荧光光谱特性,来研究色素分子间的能量传递。分析表明,20℃处理后,CP43内Chla671向Chla679和Chla682同时传递能量,并且Chla679也向Chla682传递能量,Chla682获得的能量是Chla679获得能量的1.5倍。42℃处理后,Chla671向Chla679和Chla679向Chla682的能量传递加速,最终能量几乎全部由Chla682接收。48℃处理后,Chla679向Chla682的能量传递减慢,甚至断裂,Chla671将能量分别传递给Chla679和Chla682,但是Chla682接收到的能量略多于Chla679色素分子。60℃处理后,造成了Chla671向Chla679能量传递截止,Chla671向Chla682的能量传递发生了部分截止,因此Chla671的能量部分传递Chla682。不同温度处理后的荧光强度变化表明,Chla671接收到的能量受到蛋白空间构象的影响,在48℃处理后,接收到的能量是最多的,60℃处理后,接收到的能量最少。  相似文献   

9.
温度对PSⅡCP4 7/D1/D2/Cytb559复合物荧光光谱特性的影响   总被引:3,自引:3,他引:0  
采用激励光源为514.5 nm的分幅扫描单光子计数荧光光谱装置对经20℃、42℃和48℃不同温度处理后的反应中心复合物CP47/D1/D2/Cyt b559的荧光光谱特性进行了研究.经解析,获得不同温度处理后,CP47/D1/D2/Cyt b559复合物最大峰值未发生变化,均在682 nm,说明Chla670的能量都由Chla682接收,但损耗愈来愈小,在48℃时,损耗程度最小,而其荧光百分比未发生多大变化.振动副带~700 nm和~740 nm的中心波长都发生蓝移,在不同温度下分别为:20℃ 703 nm,749 nm;42℃ 697 nm,744 nm;48℃ 694 nm,740 nm.因此可以推测温度的升高,影响了CP47/D1/D2/Cyt b559色素蛋白的二级结构以及色素分子的空间位置,使最大峰值处的荧光强度逐渐降低,振动副带逐渐蓝移.42℃的温度已造成影响,48℃影响较大.  相似文献   

10.
采用分幅扫描单光子计数荧光光谱装置,研究温度升高对PSⅡ CP47/D1/D2/Cyt b559复合物能量传递的影响.获得分别在20℃、42℃和48℃处理后,CP47/D1/D2/Cyt b559复合物主发射峰所在的波长未发生多大改变,均在682 nm,但其荧光强度逐渐降低,而大约730 nm处主发射峰的振动副带发生了明显的变化,42℃其弱峰趋势已不显著,相对荧光强度下降,48℃弱峰趋势已完全消失;最大峰值处获得两个时间组分,这两个组分都属于电荷重组.其中,1~2 ns组分随处理温度的升高变化不大,而7~20 ns组分随温度升高变化较大,并且逐渐延长.因此,处理温度的升高使CP47/D1/D2/Cyt b559复合物的二级结构、色素分布的空间位置发生变化,从而影响了CP47/D1/D2/Cyt b559复合物中的能量传递以及电荷重组.42℃已对其造成影响,而48℃对其影响很大.  相似文献   

11.
研究了磁控溅射制备的Ag5In5Te47Sb33相变薄膜的光谱及短波长静态记录性能。研究结果表明,晶态薄膜反射率较高,并在600~900nm波长范围内,晶态与非晶态的反射率和折射率相差很大。在CD-E系统的工作波长780nm处,晶态反射率高达50%,光学常数为5.34-1.0i;非晶态反射率为23%,光学常数为2.5-1.03i。从这一角度讲,Ag5In5Te47Sb33相变薄膜适于做CD-E系统的记录介质。另外,采用波长为514.4nm的短波长光学静态记录测试仪对Ag5In5Te47Sb33薄膜的记录性能进行了测试,结果表明,这种薄膜短波长记录性能较好,它在较低功率和短脉宽的激光束作用下就可得到较高的反射率对比度。  相似文献   

12.
延时分幅扫描单光子计数荧光光谱技术   总被引:1,自引:0,他引:1  
设计建立了一套延时分幅扫描单光子计数荧光光谱装置,以雪崩光电二极管SPCM-AQR-15为荧光探测器,T914P单光子计数模件为信号接收仪器,通过对T914P的触发信号加延时,在每个延时下对荧光信号进行分幅扫描,再将所有延时的分幅扫描信号叠加在一起,可以将快速的微弱信号很好地再现出来,时间分辨率提高了16.7倍,采用此技术对光合作用CP43色素蛋白复合物进行了研究,荧光光谱解叠可分辨出三个窄谱带:681nm、684nm、729nm,并分别在670nm,680nm和685nm荧光发射处,采用全局优化拟合法处理,获取了3个寿命组分:422ps,582ps,3.75ns,其中422ps反应了Chla671到Chla679和Chla682能量传递过程;582ps代表Chla679到Chla682的能量传递;3.75ns代表Chla682包括荧光在内的所有去激发速率之和.  相似文献   

13.
假根羽藻外周天线内能量传递的飞秒光谱研究   总被引:4,自引:4,他引:0  
在时间相关单光子技术的基础上,对假根羽藻外周天线内叶绿素分子间的能量传递进行研究.采用瞬态吸收与荧光发射谱识别样品内的具有特征光谱组分的分子,得到在叶绿素分子的Q带区主要存在以下六个特征分子:Chlb630,Chlb642,Chla653652,Chla667664,Chla676,680675,Chla683682.630 nm的飞秒脉冲光的激发下,通过对不同特征发射峰出的荧光动力学进行解析得到: 1)Chlb628分子所吸收的能量仅有大约20%被直接传递给其他叶绿素分子,传能时间小于150 fs;2)叶绿素间大部分的能量传递发生在长于76 ps 时间范围内;3)传能时间常量在几百fs及10 ps左右的间接传能可能与具有不同光谱组分特征的叶绿素分子在外周天线内的排列方式以及偶极距的取向有关;4)Chlb654,657652,Chla666664,Chla677,680674和Chla683682以荧光形势耗散能量的时间常量分别为1.41 ns, 1.39 ns, 676 ps, 709 ps,这部分在整个能量耗散中占的比例不超过40%.  相似文献   

14.
水体中溶解有机物的荧光光谱特性分析   总被引:2,自引:0,他引:2  
以355 nm激光为激发光源,在实验室中利用激光诱导荧光(LIF)方法对不同水体中溶解有机物(DOM)的荧光光谱进行了测量,并以最小二乘法-高斯拟合对水体荧光光谱进行了拟合,解卷积得出了水喇曼散射谱及DOM的荧光光谱.在改变激发光脉冲强度的条件下,以一定浓度腐殖酸溶液为测量样品分析了DOM的荧光饱和特性.结果表明,随着激发光功率密度的增加,水喇曼散射强度线性增加,而DOM的荧光强度随着激发光功率密度的增加先是线性增加,此时归一化荧光强度为一恒定值.当激发光功率密度大于55 mW/cm2时, 荧光强度增加缓慢,归一化荧光强度则逐渐降低.研究发现,在有机物浓度较高时,出现了激发态分子间的单重态-单重态猝灭,并且在低浓度情况下,随着有机物浓度的增加,出现了有机物荧光峰值强度位置的红移并伴有波形的展宽.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号