首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
利用自行研制的同步辐射软X射线多层膜综合偏振测量装置, 对北京同步辐射装置(BSRF)的3W1B软X射线光束线的偏振特性进行了系统的研究. 给出了多层膜偏振元件起偏前后的测量结果, 测量能量为206eV时, 经反射镜、光栅等光束线光学元件后输出的线偏振度(起偏前)为0.585, 经多层膜偏振元件起偏后输出光的 线偏振度达到0.995.  相似文献   

2.
在北京同步辐射装置(BSRF)的3W1B软X射线光束线上利用自行研制的同步辐射软X射线综合偏振测量装置对Ni的M2,3边附近(60—70 eV)进行了软X射线磁光(magneto-optical)法拉第效应(Faraday effect)的偏转测量,实验装置主要由起偏器,检偏器,样品架,圆形钕铁硼永磁铁和MCP探测器组成,偏振元件(起偏元件和检偏元件)均采用反射式非周期性Mo/Si宽带多层膜.实验采用反射起偏和反射检偏的模式,得到一系列能量范围在60—70 eV间的法拉第偏转角结果, 关键词: 软X射线 磁光Faraday效应 综合偏振测量装置 宽带多层膜  相似文献   

3.
软X射线多层膜反射式偏振光学元件设计   总被引:6,自引:0,他引:6  
叙述了软X射线波段反射式多层膜起偏器和检偏器的设计原则和设计方法,计算了不同波段软X射线反射式多层膜起偏器和检偏器的性能,讨论了多层膜制作过程中,表界面误差(表面粗糙度和扩散)对起偏器和检偏器性能的影响,探讨了光谱分辨率对偏振元件测试过程的影响,这些设计、计算和分析为制作实用软X射线多层膜偏振光学元件提供了理论基础。  相似文献   

4.
溅射气压对X射线多层膜反射率的影响   总被引:2,自引:2,他引:0  
本文在不同的溅射气压的情况下制备了具有相同结构参量的Mo/Si多层膜,测出了其对应的小角度X衍射曲线,在北京同步辐射实验室测量了多层膜的软X射线反射率.小角X射线衍射谱表明:随着溅射气压升高,多层膜的小角X射线衍射曲线的高次峰的峰高急剧变小,半峰宽变大.反射率测量结果也表明:多层膜的X射线反射率随溅射气压的升高而急剧降低.  相似文献   

5.
13.9 nm马赫贞德干涉仪用软X射线分束镜研究   总被引:2,自引:2,他引:0       下载免费PDF全文
 介绍了13.9 nm马赫贞德干涉仪用软X射线分束镜的设计、制备与性能检测。基于分束镜反射率和透过率乘积最大的评价标准,设计了13.9 nm软X射线激光干涉实验用多层膜分束镜。采用磁控溅射方法在有效面积为10 mm×10 mm、厚度为100 nm的Si3N4基底上镀制了Mo/Si多层膜,制成了多层膜分束镜。利用X射线掠入射衍射的方法测量了Mo/Si多层膜的周期。用扩束He-Ne激光束进行的投影成像方法定性分析了分束镜的面形精度,利用光学轮廓仪完成了分束镜面形精确测量。利用北京同步辐射装置测量了分束镜反射率和透射率,在13.9 nm处,分束镜反射率和透过率乘积达4%。使用多层膜分束镜构建了软X射线马赫贞德干涉仪,并应用于13.9 nm软X射线激光干涉实验中,获得了清晰的含有C8H8等离子体电子密度信息的动态干涉条纹。  相似文献   

6.
北京同步辐射装置3W1B软X射线光束线偏振特性测量   总被引:1,自引:0,他引:1  
应用自行研制的Mo/Si周期多层膜作为起偏器和检偏器的光学元件, 测量了北京同步辐射装置3W1B束线的偏振状态. 通过数据分析, 得到了3W1B软X射线的有关偏振参数, 在86—89eV能区经过起偏器后的偏振度超过98%, 圆偏振分量介于1%—3%之间.  相似文献   

7.
4.48 nm正入射软X射线激光用Cr/C多层膜高反射镜的研制   总被引:1,自引:0,他引:1  
针对4.48nm类镍钽软X射线激光及其应用实验,设计制备了工作于这一波长的近正入射多层膜高反射镜。选择Cr/C为制备4.48nm高反射多层膜的材料对,通过优化设计,确定了多层膜的周期、周期数以及两种材料的厚度比。模拟了多层膜非理想界面对高反射多层膜性能的影响。采用直流磁控溅射方法在超光滑硅基片上实现了200周期Cr/C多层膜高反射镜的制备。利用X射线衍射仪测量了多层膜结构,在德国BessyⅡ同步辐射上测量了在工作波长处多层膜反射率,测量的峰值反射率达7.5%。对衍射仪测量的掠入射反射曲线和同步辐射测量的反射率曲线分别进行拟合,得到的粗糙度和厚度比的结果相近。测试结果表明,所制备的Cr/C多层膜样品结构良好,在指定工作波长处有较高的反射峰,达到了设计要求。  相似文献   

8.
水窗波段反射式偏振光学元件的设计和制作   总被引:1,自引:0,他引:1  
水窗波段是软X射线进行生物活细胞显微成像的最佳波段,因此对于水窗波段偏振光学元件的研究有着非常重要的意义。用菲涅耳公式计算出在水窗波段内不同材料组合对应不同波长的最大反射率,模拟分析了多层膜周期和表界面粗糙度对多层膜偏振光学元件性能的影响。用超高真空磁控溅射镀膜设备,制作出2.40nm、3.00nm和4.30nm波长处W/B4C多层膜偏振元件,并用X射线衍射仪对元件的周期厚度进行了测量,得到的测量结果与设计值偏差很小,可以进行实际应用。为水窗波段反射式偏振光学元件的研究提供了理论依据,同时也为相应偏振光学元件的制备确定了合适的工艺参量。  相似文献   

9.
在特定波长下,用四层结构模型模拟了Mo/Si多层膜的软X射线反射率.研究了扩散屏障层dMo-on-Si和dSi-on-Mo对Mo/Si多层膜软X射线反射率的影响.研究发现,扩散屏障层并不总是损害Mo/Si多层膜的光学性能,通过合理设计dMo-on-Si和dSi-on-Mo厚度,增加dMo-on-Si与dSi-on-Mo的比值,也能提高多层膜的软X射线反射率.  相似文献   

10.
程涛  黄文忠  孟立民  李英骏  赵静  张杰 《光子学报》2008,37(11):2288-2291
从理论上论证了利用平板靶X射线激光两个输出端光强对称的特性来测量X射线多层膜镜反射率的测量方法.针对实验布局中等离子体对X射线激光吸收可能造成测量误差的情况,以保证测量结果千分之一的精确度为基准,从理论上计算获得该方法对不同波长X射线激光的实验布局要求.并依此要求对制得的Mo/Si、Mo/Mg镜的反射率进行了实验测量.  相似文献   

11.
The B4C/Mo/Si high reflectivity multilayer mirror was designed for He-Ⅱ radiation (30.4 nm) using the layer-by-layer method. The theoretical peak reflectivity was up to 38.2% at the incident angle of 5°. The B4C/Mo/Si multilayer was fabricated by direct current magnetron sputtering and measured at the National Synchrotron Radiation Laboratory (NSRL) of China. The experimental reflectivity of the B4C/Mo/Si multilayer at 30.4 nm was about 32.5%. The promising performances of the B4C/Mo/Si multilayer mirror could be used for the construction of solar physics instrumentation.  相似文献   

12.
为制备硼边附近6.7 nm波长的极紫外高反射率多层膜反射镜,研究了Mo_2C/B_4C,Mo/B_4C周期多层膜,重点解决薄膜应力难题。采用直流磁控溅射技术制备了膜层厚度为30 nm的Mo,Mo_2C,B_4C,单层膜,周期厚度为3.5 nm,30对的Mo_2C/B_4C,Mo/B_4C周期多层膜。利用台阶仪测试了镀膜前后基底面形,计算并比较了不同薄膜样品的应力值。结果表明Mo_2C/B_4C多层膜压应力要远小于Mo/B_4C多层膜,且成膜质量与Mo/B_4C相当。因此Mo_2C/B_4C是应用于6.7 nm反射镜较好的多层膜材料组合。  相似文献   

13.
正入射Mo/B_4C软X射线多层膜   总被引:2,自引:0,他引:2  
采用Mo/B4C材料在短波长波段(λ<10.0nm)进行软X射线多层膜实验研究。在指定波长(8.0nm附近)处对多层膜进行结构设计,并制备出了周期结构准确的Mo/B4C多层膜样品。  相似文献   

14.
月基极紫外相机多层膜反射镜   总被引:1,自引:0,他引:1  
月基极紫外相机用于月球表面对地球等离子体层辐射出的30.4 nm谱线进行成像观测,多层膜反射镜是月基极紫外相机的重要光学元件。根据月基极紫外相机技术参数,选择了B4C/Mg,B4C/Mg2Si,B4C/Al,B4C/Si,Mo/Si等材料,对其周期厚度、材料比例、周期数等参数进行优化。计算了以上材料组合在30.4 nm的反射率曲线。考虑到月球环境的特殊性和材料的物理化学性质,从中选择出Mo/Si和B4C/Si两种组合,利用磁控溅射进行镀制。Mo/Si和B4C/Si多层膜在30.4 nm反射率分别达到15.3%和22.8%。  相似文献   

15.
高反射率Mo/B4C多层膜设计及制备   总被引:3,自引:2,他引:1       下载免费PDF全文
 运用遗传算法优化设计了Mo/B4C多层膜结构。入射光入射角度取10°时,设计的理想多层膜膜对数为150,周期为3.59 nm,Gamma值(Mo膜厚与周期的比值)为0.41,峰值反射率为33.29%。采用恒功率模式直流磁控溅射方法制作Mo/B4C多层膜。通过在Mo/B4C多层膜与基底之间增加15 nm厚的Cr粘附层,提高多层膜与基底的粘附力。另外,还采用调整多层膜Gamma值的方法减小其内应力,调整后多层膜结构周期为3.59 nm, Mo膜厚1.97 nm, B4C膜厚1.62 nm,峰值反射率26.34%。制备了膜对数为150的Mo/B4C膜并测量了其反射率,在波长7.03 nm处,Mo/B4C多层膜的近正入射反射率为21.0%。最后对测量结果进行了拟合,拟合得到Mo/B4C多层膜的周期为3.60 nm,Gamma值0.60,界面粗糙度为0.30 nm。  相似文献   

16.
为了实现7nm波段Mo/B4C多层膜反射镜元件的制备,研究了不同退火方式对Mo/B4C多层膜应力和热稳定性的影响。首先,采用直流磁控溅射方法分别基于石英和硅基板制作Mo/B4C多层膜样品,设计周期为3.58nm、周期数为60,Mo膜层厚度与周期的比值为0.4。其次,采用不同的退火方式对所制作的样品进行退火实验,最高退火温度500℃。最后,分别采用X射线掠入射反射、X射线散射和光学干涉仪的方法对退火前后的Mo/B4C多层膜的周期、界面粗糙度和应力进行测试。测试结果表明采用真空退火方式能够有效降低Mo/B4C多层膜的应力,且退火前后Mo/B4C多层膜的周期和界面粗糙度无明显变化,证明Mo/B4C多层膜在500℃以内具有很好的热稳定性。  相似文献   

17.
波长30.4 nm的He-II谱线是极紫外天文观测中最重要的谱线之一,空间极紫外太阳观测光学系统需要采用多层膜作为反射元件。为此研究了SiC/Mg、B4C/Mg、C/Mg、C/Al、Mo/Si、B4C/Si、SiC/Si、C/Si、Sc/Si等材料组合的多层膜在该波长处的反射性能。基于反射率最大与多层膜带宽最小的设计优化原则,选取了SiC/Mg作为膜系材料。采用直流磁控溅射技术制备了SiC/Mg多层膜,用X射线衍射仪测量了多层膜的周期厚度,用国家同步辐射计量站的反射率计测量了多层膜的反射率,在入射角12°时,实测30.4 nm处的反射率为38.0%。  相似文献   

18.
基于多层膜准单色覆盖50~1500 eV能谱的多能点发射光谱测量系统可获得聚龙一号装置Z-pinch等离子体X射线源的能谱结构和总能量等信息。考虑装置的条件,在13 nm处的多层膜需要工作在掠入射角60。常规的Mo/Si多层膜尽管反射率最高,但其带宽较大,不能满足多层膜准单色的要求。因此提出将Mo和C共同作为多层膜的吸收层材料与Si组成Si/Mo/C多层膜,可使反射率降低较小而带宽明显减小。采用磁控溅射方法制备了Si/Mo/C多层膜,其掠入射X射线反射测量表面多层膜的结构清晰完整,同步辐射工作条件下反射率测量,得到Si/Mo/C多层膜在13 nm处和掠入射角60时的反射率为56.5%,带宽为0.49 nm(3.7 eV)。  相似文献   

19.
为研制极紫外波段窄带多层膜反射镜,采用低原子序数材料组合设计了30.4 nm波长处Mg/SiC,Si/SiC,Si/B4C和Si/C多层膜反射镜,并与极紫外波段传统的Mo/Si多层膜反射镜进行对比。采用直流磁控溅射技术制备了这些多层膜,在国家同步辐射实验室辐射与计量光束线完成了多层膜反射率测量,测量结果表明:Mg/SiC多层膜的带宽最小,为1.44 nm,且反射率最高,为44%;而Mo/Si多层膜的反射率仅为24%,带宽为3.11 nm。实验结果证明了采用低原子序数材料组成的多层膜的带宽要比常规多层膜窄,该方法可以应用于极紫外波段高分辨研究。  相似文献   

20.
Zuev  S. Yu.  Pleshkov  R. S.  Polkovnikov  V. N.  Salashchenko  N. N.  Svechnikov  M. V.  Chkhalo  N. I.  Schäfers  F.  Sertsu  M. G.  Sokolov  A. 《Technical Physics》2019,64(11):1688-1691
Technical Physics - The performance of multilayer Mo/Si mirrors with B4C and Be spacers near a wavelength of 13.5 nm has been studied. It has been shown that four-component Mo/Be/Si/B4C...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号