首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The Raman active fundamentals ν1(A1g), ν2(Eg), ν5(F2g), and the overtone 2ν6 of SF6 have been investigated with a higher resolution and the band origins were estimated to be: ν1 = 774.53 cm?1, ν2 = 643.35 cm?1, ν5 = 523.5 cm?1, and 2ν6 = 693.8 cm?1. Raman and infrared data have been combined for estimation of several anharmonicity constants. The ν6 fundamental frequency is calculated as 347.0 cm?1. From the analysis of the ν2 Raman band, the following rotational constants of both the ground and upper states have been calculated:
B0 = 0.09111 ± 0.00005cm?1; D0 = (0.16±0.08)10?7cm?1
;
B2 = 0.09116 ± 0.00005cm?1; D2 = (0.18±0.04)10?7cm?1
.  相似文献   

2.
Band contour analyses of the absorption bands of 78Se16O2 and 80Se16O2 at 2949 Å, assigned to the 103 transition (King and McLean, in press), show that they are type A, with transition moment directed in-plane and parallel to the line joining the oxygen nuclei. The electronic transition responsible for the B absorption system of the molecule is therefore 1B2-X?1A1 under the C2v point group. The contour analysis gives the excited state bond angle as 101.0°, and the bond length as 1.74 Å. The latter value is confirmed by Franck-Condon calculations. There is therefore an increase in bond length and a decrease in bond angle upon electronic excitation. This agrees with the predictions of molecular orbital theory.  相似文献   

3.
Medium resolution infrared grating spectra of gaseous ketene, H2CCO were recorded between 1000 and 400 cm?1, both at instrument temperature (40°C) and with cooling (?40°C). Interferometric Fourier spectra were also measured at ?70°C with resolution 0.22 cm?1 between 450 and 330 cm?1. The K structure of the fundamentals ν5, ν6, ν8, and ν9 was assigned. These fundamentals are coupled by a-axis Coriolis interactions. These couplings were analysed on the symmetric top basis for setting up the perturbation matrix and by utilizing the K-dependent Coriolis shifts of levels. A preliminary analysis of the Coriolis intensity anomalies was also undertaken.Band center values from combination differences are ν50 = 587.30 (27) and ν60 = 528.36 (39) cm?1. Synthetic spectra indicate the band origins of ν8 and ν9 to be close to 977.8 and 439.0 cm?1, respectively. Estimates of Coriolis coupling constants obtained from synthetic spectra are ζ58a = + 0.33 (5), ζ68a = + 0.714 (20), ζ59a = ? 0.774 (20), and ζ69a = ? 0.30 (2). Approximate ratios of unperturbed vibrational transition moments obtained from spectral simulations are M80:±iM50:±iM60:M90 ≈ +2:?9:+10:+0.5.  相似文献   

4.
A weak emission spectrum of I2 near 2770 Å is reanalyzed and found to to minate on the A(1u3Π) state. The assigned bands span v″ levels 5–19 and v′ levels 0–8. The new assignment is corroborated by isotope shifts, band profile simulations, and Franck-Condon calculations. The excited state is an ion-pair state, probably the 1g state which tends toward I?(1S) + I+(3P1). In combination with other results for the A state, the analysis yields the following spectroscopic constants: Te = 10 907 cm?1, De = 1640 cm?1, ωe = 95 cm?1, R″e = 3.06 A?; Te = 47 559.1 cm?1, ωe = 106.60 cm?1, R′e = 3.53 A?.  相似文献   

5.
A rotational assignment of approximately 80 lines with Ka′ = 0, 1, 2, 3, and 4 has been made of the 593 nm 2A12B2 band of NO2 using cw dye laser excitation and microwave optical double-resonance spectroscopy. Rotational constants for the 2B2 state were obtained as A = 8.52 cm?1, B = 0.458 cm?1, and C = 0.388 cm?1. Spin splittings for the Ka′ = 0 excited state levels fit a simple symmetric top formula and give (?bb + ?cc)2 = ?0.0483 cm?1. Spin splittings for Ka′ = 1 (N′ even) are irregular and are shown to change sign between N′ = 6 and 8. Assuming that the large inertial defect of 4.66 amu Å2 arises solely from A, a structure for the 2B2 state is obtained which gives r (NO) = 1.35 A? and an ONO angle of 105°. Alternatively, weighting the three rotational constants equally gives r = 1.29 A? and θ = 118°.  相似文献   

6.
The fundamental bands of the CF radical in the X2Π12 and X2Π32 electronic states were observed by using an infrared tunable diode laser as a source. Zeeman modulation could be used in detecting lines not only in the 2Π32 state, but also in 2Π12, because the CF radical deviates considerably from Hund's case (a). From the least-squares analysis of the observed spectra, the following molecular constants were obtained: Be = 1.416 704 (37) cm?1, αe = 0.018 419 (50) cm?1, re = 1.271 977 (17) A?, De = 6.68 (15) × 10?6cm?1, p0 = 0.008 580 (21) cm?1, p1 = 0.008 52 (11) cm?1, and ν0 = 1286.1281 (5) cm?1, with three standard errors in parentheses.  相似文献   

7.
The E-B (0g+-0u+) band system of Br2 has been investigated at Doppler-limited resolution using polarization labeling spectroscopy. Merged E state data for the three naturally occurring isotopes in the range vE = 0–16, expressed in terms of the constants for 79Br2, are (in cm?1) Y0,0 = 49 777.962(54), Y1,0 = 150.834(22), Y2,0 = ?0.4182(28), Y3,0 = 6.6(11) × 10?4, Y0,1 = 4.1876(28) × 10?2, Y1,1 = ?1.607(16) × 10?4, and Y0,2 = 1.39(39) × 10?8. The bond distance is re = 3.194 A?, and the diabatic dissociation energy to Br+(3P2) + Br?(1S0) is 34 700 cm?1.  相似文献   

8.
The B?X? band system of NO2, 2Σ?gu) ← 2A1, has been measured in absorption in a neon matrix at 6 K, using 15NO2 and N18O2 in addition to the normal isotope. The spectrum consists essentially of a single, long progression of bands terminating on successive levels of the bending mode in the upper state. Transitions to odd- and even-v2′ states occur with a uniform intensity distribution indicating that the rotation of the bent ground state of NO2 about its near-prolate axis is hindered in the matrix. The observations strongly suggest that the top axis of the molecule coincides with a C2 axis of neon crystals in the polycrystalline matrix. Relative to the vapor absorption the matrix spectrum is red shifted by about 150 cm?1, the crystal field parameter V2 and principal constants of the B? state of 14N16O2 in neon being
T010 14 571 cm?1: x22, ?0.3 cm?1;
w2 460.2 cm?1: V2, 80 cm?1.
  相似文献   

9.
Some spectroscopic properties of the low-energy electronic states of 9-fluorenone have been examined. The spectra in paraffin matrices at 4.2°K show detailed vibrational spectra. Two fluorescence spectra are observed; a diffuse emission arises from 9-fluorenone crystals in the paraffin matrix, and a sharp emission is characteristic of the molecule. The sharp fluorescence is analyzed in terms of known a1 vibrational fundamentals. The sharp absorption is a near mirror-image to the fluorescence, so Herzberg-Teller vibrations are not prominent. The polarization in the crystal spectrum allows this low-energy transition near 23 000 cm?1 to be assigned 1B21A1. Because there is no vibronic perturbation in fluorescence, and certainly no out-of-plane modes, a π1 ← n transition seen at about 26 000 cm?1 is tentatively assigned 1B11A1. Another sharp absorption system is seen at 31 000 cm?1 in the paraffin matrices at 4.2°K (linewidth 6 cm?1) but no fluorescence was detected. The polarized crystal spectrum indicated the assignment of this system and another very strong system at 40 000 cm?1 to be 1B21A1, while other systems at about 34 000 cm?1 and 44 000 cm?1 are 1A11A1.The phosphorescence spectrum of pyrene-d10 held in a single crystal of 9-fluorenone at 4.2°K has been recorded. No delayed fluorescence from the host crystal is observed at 4.2°K but is intense at 77°K. The energy difference between host and guest triplet levels is estimated to be about 900 cm?1 allowing the lowest triplet state of 9-fluorenone to be placed at 17 800 cm?1.  相似文献   

10.
The 276-nm absorption band system (1B21A1) of m-dichlorobenzene was photographed under high resolution. The electronic origin band (0, 0) and a band at (0 + 380) cm?1 were subjected to rotational “band contour” analysis. As a result, it is found that the origin band has a type A band contour and that at (0 + 380) cm?1 exhibits a type B band contour. The band contour analysis also yields an accurate determination of the excited state parameters, viz., A′ = 0.0911 ± 0.0003, B′ = 0.02852 ± 0.00005, and C′ = 0.02175 ± 0.00001 cm?1. A model geometry for the molecule m-DCB in its first excited singlet state has been proposed.  相似文献   

11.
The v = 1 ← 0 vibration-rotation bands of the NS radical in the X2Π12 and X2Π32 electronic states were observed by using a tunable diode laser. From the least-squares analysis the band origins were determined to be 1204.2755(12) and 1204.0892(19) cm?1, respectively, for X2Π12 and X2Π32. The rotational and centrifugal distortion constants and the internuclear distance in the X2Π electronic state were obtained as follows: Be = 0.775549(10) cm?1, De = 0.00000129(33) cm?1, and re = 1.49403(4) A?, with three standard deviations indicated in parentheses.  相似文献   

12.
Optical absorption spectra have been measured on thin (011) single crystal platelets and on highly oriented (110) thin films of αFe2O3. We have observed and assigned some of the absorption bands predicted by ligand field theory and SCF-Xα calculations. The temperature dependence of the 11760 cm?1 single crystal band has been fitted to the function ? = ?0(1 + exp (? θT)) with ?0 = 0.85 × 10?4 and θ = 200 K (139 cm?1). We have measured the photocurrent as a function of wavelength and have found several peaks that coincide with optical absorption bands.  相似文献   

13.
The wavenumbers of the vibration rotation band lines of 14N16O are reported for the 2Π12-2Π12, 2Π12-2Π12 and 2Π12-2Π12 subbands of the 1-0 transition in the infrared. The full set of spectroscopic constants for this band has been determined by direct approach using the analysis of Zare, Schmeltekopf, Harrop, and Albritton. In addition to the band origin ν0 and the B, D, H constants for the lower and upper vibrational levels, the following spin-orbit coupling constants have been derived: A?0 = 123.02772 ± 0.00011 and A?1 = 122.78248 ± 0.00011 (in cm?1). Apparent centrifugal corrections to these constants have been determined and the values obtained for them are A?D0 = (0.347573 ± 0.00051) × 10?3 and A?D1 = (0.337135 ± 0.00050) × 10?3cm?1. Λ-Type doubling constants evaluated by using both grating and tunable laser data are also reported.  相似文献   

14.
The emission and excitation spectra of the aromatic thioketone xanthione have been measured in Shpolskii matrices at 15 K. Under these conditions a sharp and rich vibrational structure is observed in the lowest triplet and the first and second excited singlet states. The phosphorescence excitation spectrum places the origin of the T1S0 transition at 15 143 cm?1, while that of the S1(n, π1) ← S0 absorption is tentatively assigned to the band at 16 093 cm?1. The phosphorescence spectrum, which shows only a weak CS stretch vibrational band, is dominated by ring vibrations. In accordance with the previous analysis of ODMR measurements, it is suggested that T1 and T2 states are energetically very close, thereby resulting in a lowest triplet state of heavily mixed n, π1, π1 character. No mirror-image relationship is found between the relatively strong S2S0 fluorescence and the excitation spectrum of the S2(π, π1) ← S0 transition. The latter is dominated by a long, pronounced 336-cm?1 progression.  相似文献   

15.
The vibration-rotation transitions for v = 1 ← 0 of NO (2Π12) have been studied by using the technique of laser magnetic resonance spectroscopy. Five magnetic resonance lines are observed with three CO laser lines in the range from 1859 to 1886 cm?1. From these, three zero-field transition frequencies, v = 1 ← 0; R(32), P(72), and P(92) are obtained with an accuracy of ±0.0007 cm?1. The molecular constants which have been determined by borrowing centrifugal constants from a previous infrared work are B021 = 1.72004 ± 0.00006 cm?1, B121 = 1.70212 ± 0.00010 cm?1, and G(v = 1) ? G(v = 0) (for 2Π12) = 1875.8470 ± 0.0007 cm?1.  相似文献   

16.
Lines in the ν3 (“antisymmetric” stretch) fundamental of the NCO radical in the X?2Π state were studied by CO laser magnetic resonance. The observations were assigned to P and R lines in the vibration-rotation band and lead to a precise determination of the vibrational interval and the anharmonic correction to the rotational constant: ν3 = 1920.60645(19) cm?1, α3 = 0.003338(21) cm?1. A single transition in the hot band (011)-(010), 2Δ52-2Δ52 was detected. This observation is used to determine the origin of the hot band as 1907.11892(20) cm?1, i.e., the anharmonicity parameter x23 = ?13.48753(28) cm?1.  相似文献   

17.
The 9613 Å band of CH3D has been photographed under high resolution using a path length of 640 m and a pressure of 593 Torr. The band is parallel in type and a rotational analysis has been carried out. The principal molecular constants for the upper state are:
T0 = 10404.770 (15) cm?1, B = 3.68941 (48) cm?1
. A few small (<0.2 cm?1) rotational perturbations have been found in the excited state levels with K′ = 0 to 4. No transitions have yet been identified to levels with K′ > 4.The possibility of using the 9613 Å band as a means of measuring the DH ratio in planetary atmospheres is discussed.  相似文献   

18.
The vapor phase absorption spectrum of thiophosgene (Cl2CS) in the 2500–2900 Å region consists of a broad intense band (log ?max = 3.5 at 2540 A?. On the red side of this a vibrationally discrete structure is found which becomes increasingly diffuse and merges into the broad band as the wavelength is decreased. It is shown that this vibrational structure can be explained as due to a π → π1, 1A1 - X?1A1 electronic transition between a planar ground state and a pyramidal excited state of the molecule. In the latter state, the CS stretching mode ν1′(a1) = 681 cm?1 and the CCl bending mode ν3′(a1) = 147 cm?1. From the inversion doublet splitting of the out-of-plane mode ν4′(b1), the barrier to inversion is calculated to be ~126 cm?1, with an equilibrium out-of-plane angle of ~20°.  相似文献   

19.
A high-resolution infrared spectrum of methane-d2 has been measured in the C-D stretching band region (2025–2435 cm?1). Rotational structures of the ν2 and ν8 bands have been assigned by use of the ASSIGN-diagram method, and the c-type Coriolis interaction between ν2 and ν8 has been analyzed. The band origins, ν2 = 2203.22 ± 0.01 cm?1 and ν8 = 2234.70 ± 0.01 cm?1, the rotational constants and the centrifugal distortion constants for the two bands, and the Coriolis coupling constant, ∥;ξ28c∥; = 0.182 ± 0.015 cm?1, have been determined.  相似文献   

20.
The infrared spectrum of C3O2 was recorded with the vacuum Fourier transform interferometer of Laboratoire Aimé Cotton at a resolution of 0.005 cm?1. The ground state molecular constants were calculated from lower state combination relations in a simultaneous analysis of six ground state transitions situated in the region 3000 to 5000 cm?1. Through the analysis of a difference band we established that 70 is 60.7022 ± 0.0005 cm?1 above the ground vibrational state. Accurate molecular constants were also determined for this vibrational level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号