首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Two related numerical models that calculate the time-dependent pressure field radiated by an arbitrary photoacoustic source in a fluid, such as that generated by the absorption of a short laser pulse, are presented. Frequency-wavenumber (k-space) implementations have been used to produce fast and accurate predictions. Model I calculates the field everywhere at any instant of time, and is useful for visualizing the three-dimensional evolution of the wave field. Model II calculates pressure time series for points on a straight line or plane and is therefore useful for simulating array measurements. By mapping the vertical wavenumber spectrum directly to frequency, this model can calculate time series up to 50 times faster than current numerical models of photoacoustic propagation. As the propagating and evanescent parts of the field are calculated separately, model II can be used to calculate far- and near-field radiation patterns. Also, it can readily be adapted to calculate the velocity potential and thus particle velocity and acoustic intensity vectors. Both models exploit the efficiency of the fast Fourier transform, and can include the frequency-dependent directional response of an acoustic detector straightforwardly. The models were verified by comparison with a known analytic solution and a slower, but well-understood, numerical model.  相似文献   

2.
Apoorva Patel 《Pramana》1993,41(1):139-165
I review the current status of several lattice QCD results. I concentrate on new analytical developments and on numerical results relevant to phenomenology.  相似文献   

3.
The detection of the quantum dot charge state using a quantum point contact charge detector has opened a new exciting route for the investigation of quantum dot devices in recent years. In particular, time-resolved charge detection allowed the precise measurement of quantum dot shot noise at sub-femtoampere current levels, and the full counting statistics of the current. The technique can be applied to different material systems and holds promise for future application in quantum dot based quantum information processing implementations. We review recent experiments employing this charge detection technique, including the self-interference of individual electrons and back-action phenomena.  相似文献   

4.
Steven L Liebling 《Pramana》2000,55(4):497-509
Studying the threshold of black hole formation via numerical evolution has led to the discovery of fascinating nonlinear phenomena. Power-law mass scaling, aspects of universality, and self-similarity have now been found for a large variety of models. However, questions remain. Here I briefly review critical phenomena, discuss some recent results, and describe a model which demonstrates similar phenomena without gravity.  相似文献   

5.
The current study simultaneously addresses the problem of reflection and refraction of sound from a rigid porous ground surface. A more rigorous approach is used to derive more accurate asymptotic solutions that can be cast in a convenient form for ease of numerical implementations. The solutions provide means for rapid computations of the sound fields above and below the rigid porous ground. The improved asymptotic formulas for both situations agree well with numerical results obtained by other numerical schemes, which are more accurate but computationally more intensive. More importantly, the asymptotic solutions can be written in the well-known form of the Weyl-van der Pol formula, which provides a direct correlation between the reflected wave term for the sound field above the porous ground and the transmitted (refracted) wave term for the sound field below.  相似文献   

6.
Martial Mazars 《Molecular physics》2013,111(13-14):1927-1936
Yukawa potentials may be long-ranged when the Debye screening length is large. In computer simulations, such long-ranged potentials have to be taken into account with convenient algorithms to avoid systematic bias in the sampling of the phase space. Recently, we provided Ewald sums for quasi-two-dimensional systems with Yukawa interaction potentials [J. Chem. Phys. 126, 056101 (2007); Molec. Phys. paper I of this series]. Sometimes, Lekner sums are used as an alternative to Ewald sums for Coulomb systems. In the present work, we derive the Lekner sums for quasi-two-dimensional systems with Yukawa interaction potentials and we give numerical tests for practical implementations. The main result of this paper is to emphasize that Lekner sums cannot be considered as an alternative to Ewald sums for Yukawa potentials. As a conclusion to this work: Lekner sums should not be used for quasi-two-dimensional systems with Yukawa interaction potentials.  相似文献   

7.
We present a review on perception and cognition models designed for or applicable to music. An emphasis is put on computational implementations. We include findings from different disciplines: neuroscience, psychology, cognitive science, artificial intelligence, and musicology. The article summarizes the methodology that these disciplines use to approach the phenomena of music understanding, the localization of musical processes in the brain, and the flow of cognitive operations involved in turning physical signals into musical symbols, going from the transducers to the memory systems of the brain. We discuss formal models developed to emulate, explain and predict phenomena involved in early auditory processing, pitch processing, grouping, source separation, and music structure computation. We cover generic computational architectures of attention, memory, and expectation that can be instantiated and tuned to deal with specific musical phenomena. Criteria for the evaluation of such models are presented and discussed. Thereby, we lay out the general framework that provides the basis for the discussion of domain-specific music models in Part II.  相似文献   

8.
Here, I present a novel method for normalizing a finite set of numbers, which is studied by the domain of biological vision. Normalizing in this context means searching the maximum and minimum number in a set and then rescaling all numbers such that they fit into a numerical interval. My method computes the minimum and maximum number by two pseudo-diffusion processes in separate diffusion layers. Activity of these layers feed into a third layer for performing the rescaling operation. The dynamic of the network is richer than merely performing a rescaling of its input, and reveals phenomena like contrast detection, contrast enhancement and a transient compression of the numerical range of the input. Apart from presenting computer simulations, some properties of the diffusion operators and the network are analysed mathematically. Furthermore, a method is proposed for to freeze the model’s state when adaptation is observed.  相似文献   

9.
This paper presents a formulation for free-surface computations capable of handling complex phenomena, such as wave breaking, without excessive mass loss or smearing of the interface. The formulation is suitable for discretizations using finite elements of any topology and order, or other approaches such as isogeometric and finite volume methods. Furthermore, the approach builds on standard level set tools and can therefore be used to augment existing implementations of level set methods with discrete conservation properties. Implementations of the method are tested on several difficult two- and three-dimensional problems, including two incompressible air/water flow problems with available experimental results. Linear and quadratic approximations on unstructured tetrahedral and trilinear approximations on hexahedral meshes were tested. Global conservation and agreement with experiments as well as computations by other researchers are obtained.  相似文献   

10.
超快强激光在光学介质(如空气)中传播时由于克尔自聚焦效应和等离体散焦效应动态平 衡会发生一种独特的非线性激光成丝现象。激光成丝过程会诱导一些独特的物理现象,如非线性 光频转换产生超连续光谱、等离子体诱导高压放电、锥形辐射等,在大气传感、天气控制等研究 领域具有重要的应用前景。本文针对飞秒激光大气成丝过程中与传输介质相互作用所诱导的非线 性发光过程,介绍了激光大气成丝所产生的超连续光谱(白光)激光、谐波产生和太赫兹波辐射 三种非线性光频转换现象,并着重探讨了太赫兹波辐射的物理机理、研究现状和应用前景。  相似文献   

11.
In this review I discuss catastrophes, bifurcations and strange attractors in a non-mathematical manner by giving very simple examples that st ill contain the essence of the phenomenon. The salientresults of the applications of these non-linear methods in astrophysics are reviewed and include such diverse phenomena as solar flares and loop brightenings (catastrophes), formation of binaries and cyclic stellar winds (bifurcations) and the solar cycle and galactic dynamics (strange attractors). Emphasis is laid on the unifying concept of non-linearity in (simple) differential equatio ns that can be the framework for understanding and predicting such diverse phenomena as mentioned above. Finally there is a discussion on the concept of intrinsic unpredictability (as a result on non-linearity), the limit it sets to the use of numerical models and the way it contradicts our intuiti ve notions on deterministic systems.  相似文献   

12.
The discovery of cosmic acceleration has raised the intriguing possibility that we are witnessing the first breakdown of General Relativity on cosmological scales. In this article I will briefly review current attempts to construct theoretically consistent and observationally viable modifications of gravity that are capable of describing the accelerating universe. I will discuss f(R) models, and their obvious extensions, and the DGP model as an example of extra-dimensional implementations. I will then briefly describe the Galileon models and their very recent multifield and curved space extensions—a class of four-dimensional effective field theories encoding extra dimensional modifications to gravity.  相似文献   

13.
14.
The original results are presented, and the current status of the Fermi level pinning in semiconductors is reviewed for different physical phenomena (interphase boundaries, semiconductor clusters, and radiation modification of semiconductors).  相似文献   

15.
Star formation lies at the center of a web of processes that drive cosmic evolution: generation of radiant energy, synthesis of elements, formation of planets, and development of life. Decades of observations have yielded a variety of empirical rules about how it operates, but at present we have no comprehensive, quantitative theory. In this review I discuss the current state of the field of star formation, focusing on three central questions: What controls the rate at which gas in a galaxy converts to stars? What determines how those stars are clustered, and what fraction of the stellar population ends up in gravitationally-bound structures? What determines the stellar initial mass function, and does it vary with star-forming environment? I use these three questions as a lens to introduce the basics of star formation, beginning with a review of the observational phenomenology and the basic physical processes. I then review the status of current theories that attempt to solve each of the three problems, pointing out links between them and opportunities for theoretical and numerical work that crosses the scale between them. I conclude with a discussion of prospects for theoretical progress in the coming years.  相似文献   

16.
The gas-kinetic numerical algorithm solving the Boltzmann model equation is extended and developed to study the three-dimensional hypersonic flows of spacecraft re-entry into the atmosphere in perfect gas. In this study, the simplified velocity distribution function equation for various flow regimes is presented on the basis of the kinetic Boltzmann–Shakhov model. The discrete velocity ordinate technique and numerical quadrature methods, such as the Gauss quadrature formulas with the weight function 2/π1/2exp(?V2) and the Gauss–Legendre numerical quadrature rule, are studied to resolve the barrier in simulating complex flows from low Mach numbers to hypersonic problems. Specially, the gas-kinetic finite-difference scheme is constructed for the computation of three-dimensional flow problems, which directly captures the time evolution of the molecular velocity distribution function. The gas-kinetic boundary conditions and numerical procedures are studied and implemented by directly acting on the velocity distribution function. The HPF (high performance fortran) parallel implementation technique for the gas-kinetic numerical method is developed and applied to study the hypersonic flows around three-dimensional complex bodies. The main purpose of the current research is to provide a way to extend the gas-kinetic numerical algorithm to the flow computation of three-dimensional complex hypersonic problems with high Mach numbers. To verify the current method and simulate gas transport phenomena covering various flow regimes, the three-dimensional hypersonic flows around sphere and spacecraft shape with different Knudsen numbers and Mach numbers are studied by HPF parallel computing. Excellent results have been obtained for all examples computed.  相似文献   

17.
We investigate the orientation of the vortex lattice driven by an applied current by means of numerical simulations based on the time-dependent Ginzburg–Landau (TDGL) theory. A lattice order is restored by a current driving of vortices under the influence of random vortex pinnings. The orientation of the moving vortex lattice is different between the presence and the absence of vortex pinnings. We show results of TDGL simulations for these phenomena.  相似文献   

18.
This paper investigates the non steady-state displacement of magnetic domain walls in a nanostrip submitted to a time-dependent spin-polarized current flowing along the nanostrip. First, numerical micromagnetic simulations show that a domain wall can move under application of a current pulse, and that the displacement resulting from a conversion of the domain wall structure is quantized. The numerical findings are subsequently explained in the framework of simplified analytic models, namely the 1D model and the point-core vortex model. We then introduce the concept of an angle linked to the magnetization of a general domain wall, and show that it allows understanding the transient phenomena quite generally. Simple analytic formulas are derived and compared to experiments. For this, charts are given for the key parameters of the domain wall mechanics, as obtained from numerical micromagnetic simulations. We finally discuss the limitations of this work, by looking at the influence of temperature elevation under current, presence of a non-adiabatic term, and of disorder.  相似文献   

19.
王振林 《物理学进展》2011,29(3):287-324
随着理论研究的深入和现代微加工技术的进步,对支持表面等离激元的金属微纳结构体系的研究已形成了一门新兴学科方向,即表面等离激元光子学。由于表面等离激元具有独特的光学特性,在数据存储、超分辨成像、光准直、太阳能电池、生物传感器以及负折射材料等方面有着重要的应用前景,成为当前广受国内外学者重视的热点研究领域之一。本文对表面等离激元的特点、基本现象,以及其带来的新颖效应及其应用研究前景的最新发展进行了介绍。  相似文献   

20.
《中国物理 B》2021,30(10):100506-100506
A five-value memristor model is proposed, it is proved that the model has a typical hysteresis loop by analyzing the relationship between voltage and current. Then, based on the classical Liu–Chen system, a new memristor-based four-dimensional(4D) chaotic system is designed by using the five-value memristor. The trajectory phase diagram, Poincare mapping, bifurcation diagram, and Lyapunov exponent spectrum are drawn by numerical simulation. It is found that, in addition to the general chaos characteristics, the system has some special phenomena, such as hidden homogenous multistabilities, hidden heterogeneous multistabilities, and hidden super-multistabilities. Finally, according to the dimensionless equation of the system, the circuit model of the system is built and simulated. The results are consistent with the numerical simulation results, which proves the physical realizability of the five-value memristor-based chaotic system proposed in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号