首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
We review new methodologies for glucose sensing from our laboratories based on the specific biological interactions between Con A, dextran-coated gold nanoparticles and glucose, and the interactions between dextran, glucose, and boronic-acid capped silver nanoparticles in solution. Our new approaches promise new tunable glucose sensing platforms. Dextran-coated gold nanoparticles were aggregated with the addition of Con A resulting in increase an in absorbance of nanoparticles at 650 nm, where the post-addition of glucose caused the dissociation of the aggregates and thus a decrease in the absorbance at 650 nm. The interaction of glucose and dextran with boronic acid-capped silver nanoparticles in solution resulted in enhanced luminescence intensity cumulatively due to surface-enhanced fluorescence and the decrease in absorbance at 400 nm, with an increase in absorbance at 640 nm. Lifetime measurements were used to distinguish the contribution from the surface-enhanced fluorescence. TEM was employed to assess the aggregation of nanoparticles.  相似文献   

2.
Cui  Huahua  Wu  Shanshan  Wang  Lei  Sun  Xiangzhong  Zhang  He  Deng  Mengyu  Tian  Yanqing 《Journal of fluorescence》2022,32(5):1621-1627

In this study, we aimed to synthesize magnetically well-dispersed nanosensors for detecting dissolved oxygen (DO) in water, and explore their biological applications. Firstly, we synthesized two kinds of magnetic nanoparticle with average sizes of approximately 82 nm by one-step emulsion polymerization: polystyrene magnetic nanoparticles (Fe3O4@Os1-PS) and polymethylmethacrylate magnetic nanoparticles (Fe3O4@Os1-PMMA). Both types of nanoparticle present good dispersibility and fluorescence stability. The nanoparticles could be used as oxygen sensors that exhibited a high DO-sensitivity response in the range 0-39.30 mg/L, with a strong linear relationship. The nanoparticles have good magnetic properties, and so they could be recycled by magnet for further use. Recovered Fe3O4@Os1-PS still presented high stability after continued use in oxygen sensing for one month. Furthermore, Fe3O4@Os1-PS was employed for detecting the bacterial oxygen consumption of Escherichia coli (E-coli) to monitor the metabolism of bacteria. The results show that Fe3O4@Os1-PS provide high biocompatibility and non-toxicity. Polystyrene magnetic nanoparticles therefore present significant potential for application in biological oxygen sensing.

  相似文献   

3.
In recent years, semiconducting polymer nanoparticles have emerged as a new class of extraordinarily bright fluorescent probes. These polymer nanoparticles, which are primarily composed of π‐conjugated polymers, exhibit a variety of outstanding features, including exceptional fluorescence brightness, fast radiative rate, good photostability, facile surface functionalization, and low cytotoxicity. These advantageous characteristics make polymer nanoparticles highly promising for applications in biological imaging and sensing. This progress report highlights recent advances in the synthesis, characterization, and applications as bio‐labels or sensors of these highly emissive organic nanoparticles.  相似文献   

4.
Yu  Dezhong  Zha  Zhonghui  Tang  Sheng  Qiu  Yuan  Liu  Dong 《Journal of fluorescence》2022,32(4):1289-1297
Journal of Fluorescence - Upconversion nanoparticles (UCNPs) have achieved considerable success in protein sensing in vitro. And aptamer is one of the most frequently used biomolecules to modify...  相似文献   

5.
Fluorescent silica nanoparticles encapsulating organic fluorophores provide an attractive materials platform for a wide array of applications where high fluorescent brightness is required. We describe a class of fluorescent silica nanoparticles with a core-shell architecture and narrow particle size distribution, having a diameter of less than 20 nm and covalently incorporating a blue-emitting coumarin dye. A quantitative comparison of the scattering-corrected relative quantum yield of the particles to free dye in water yields an enhancement of approximately an order of magnitude. This enhancement of quantum efficiency is consistent with previous work on rhodamine dye-based particles. It provides support for the argument that improved brightness over free dye in aqueous solution is a more general effect of covalent incorporation of fluorescent organic dyes within rigid silica nanoparticle matrices. These results indicate a synthetic route towards highly fluorescent silica nanoparticles that produces excellent probes for imaging, security, and sensing applications.  相似文献   

6.
Semiconductor nanoparticles exhibit size dependent properties, when their size is comparable to the size of Bohr diameter for exciton. This can be exploited to increase fluorescence efficiency or increase the internal magnetic field strength in doped semiconductors. Nanoparticles are usually unstable and can aggregate. It is therefore necessary to protect them. Surface passivation using capping molecules or by making core–shell particles are some useful ways. Here synthesis and results on doped and un-doped nanoparticles of ZnS, CdS and ZnO will be discussed. We shall present results on core–shell particles using some of these nanoparticles and also discuss briefly the effect of Mn doping on hyperfine interactions in case of CdS nanoparticles.  相似文献   

7.
Surface plasmon spectroscopy of serum albumin protected prism‐shaped silver nanoparticles is used as simple and effective sensing tool to detect glutamate salts. The approach does not require any electrochemical setup to detect glutamates, in contrast to common techniques to detect glutamates in general. Experiments reveal that upon presence of high concentrations of glutamate salts, the prism‐shaped nanoparticles are transformed to smaller‐sized nanoclusters, while the remaining nanoparticles are assembled to form aggregates. Control experiments confirm that the interaction is specific to the serum albumin coating, the prism shape of the nanoparticles, and to silver.  相似文献   

8.
This work investigates a novel usage of aluminum-doped ceria nanoparticles (ADC-NPs), as the molecular probe in optical fluorescence quenching for sensing the dissolved oxygen (DO). Cerium oxide (ceria) nanoparticles can be considered one of the most unique nanomaterials that are being studied today due to the diffusion and reactivity of oxygen vacancies in ceria, which contributes to its high oxygen storage capability. Aluminum can be considered a promising dopant to increase the oxygen ionic conductivity in ceria nanoparticles which can improve the sensitivity of ceria nanoparticles to DO. The fluorescence intensity of ADC-NPs, synthesized via chemical precipitation, is found to have a strong inverse relationship with the DO concentration in aqueous solutions. Stern-Volmer constant of ADC-NPs at room temperature is determined to be 454.6 M?1, which indicates that ADC-NPs have a promising sensitivity to dissolved oxygen, compared to many presently used fluorophores. In addition, Stern-Volmer constant is found to have a relatively small dependence on temperature between 25 °C to 50 °C, which shows excellent thermal stability of ADC-NPs sensitivity. Our work suggests that ADC-NPs, at 6 nm, are the smallest diameter DO molecular probes between the currently used optical DO sensors composed of different nanostructures. This investigation can improve the performance of fluorescence-quenching DO sensors for industrial and environmental applications.  相似文献   

9.
Monomers bearing functional groups that can get chemisorbed on nanoparticles to form polymerizable monolayers have emerged as an interesting class of stabilizer ligands for various nanoparticles. High‐surface coverage, their ability to modify the properties of underlying nanoparticles, capability to form polymers of different molecular weights and possibility to make structural modifications make them attractive for their use as stabilizer ligands for nanoparticles. Both in situ and post‐synthesis grafting methods for attaching polymerizable ligands to nanoparticles are frequently used. The advantage of grafting polymerizable stabilizer on the surface of nanoparticles is that initially the polymerizable molecule acts as a proper stabilizer for the nanoparticles and later their surface polymerization or co‐polymerization with another suitable monomer can be carried out to generate the desired polymer scaffold around the nanoparticles, which ensures the increased stability of the resulting core‐polymerized shell nanoparticles. This review discusses interesting reports from recent literature on grafting of polymerizable ligands and their polymerization on gold, silver, silica, and iron oxide nanoparticles.  相似文献   

10.
银和去合金银-金纳米粒子的SERS活性研究   总被引:4,自引:2,他引:2  
用乙二醇还原硝酸银,聚乙烯吡咯烷酮作表面活性剂合成了大量的银纳米颗粒。银纳米颗粒和HAuCl4发生置换反应后形成去合金银-金纳米粒子。以吡啶和SCN-作为探针分子研究了它们的SERS活性。结果表明,当探针分子吸附于银纳米颗粒和去合金银-金纳米粒子上时,探针分子的特征振动峰强度增强、频率发生位移。SERS可表征纳米粒子物理和化学性质的变化。  相似文献   

11.
The implementation of polymer‐based composites provides a plausible alternative to develop efficient, handy and scalable substrates for surface‐enhanced Raman spectroscopy (SERS) aiming the widespread use of this technique for chemical analysis and molecular sensing. In this research, new poly(methylmethacrylate) based nanocomposites for SERS were prepared by in situ miniemulsion polymerization in the presence of organically capped metal silver nanoparticles. The ensuing composites have been investigated as analytical platforms for SERS detection of DNA constituents for variable analytical conditions. Finally, we show that in special cases, selective detection of DNA bases by SERS can be possible by varying the pH of the solution under analysis. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Owing to exotic optical responses, metallic nanoparticles and nanostructures are finding broad applications in laser science, leading to numerous design variations of plasmonic nanolasers. Nowadays, two of the most intriguing plasmonic nanolasing devices are spasers and random lasers. While a spaser is based on a single metallic nanoparticle resonator with the optical feedback provided by the localized surface plasmon resonance, the operation of a random laser relies on multiple light scattering within randomly distributed metallic nanoparticles. In this paper, an up‐to‐date review on the applications of metallic nanoparticles in spasers and random lasers is provided. Principles of a random spaser, a device combining the features of a spaser and a random laser, are briefly discussed as well. The paper is focused on major theoretical and experimental approaches to control the core metrics of lasing performance, including threshold, resonant wavelength, and emission directionality. The applications of spasers and random lasers in the fields of sensing and imaging are also mentioned. Finally, the challenges and future perspectives in this area of research are discussed.  相似文献   

13.
MiRNAs are riveting RNA molecules due to their close relevance to the regulation of gene expression and certain physiological or pathological processes. Rapid and sensitive methods for miRNA assay are essential for biological researches and clinical diagnosis of many diseases. In this work, gold nanoparticles (AuNPs) have been modified with adamantane derivatives and then Dwith NA probes for colorimetric detection of miRNA. Target miRNA induces a change in DNA conformation and initiates strand displacement amplification, eventually leading to massive aggregations of AuNPs. By comparing the UV–vis absorption spectra, miRNA concentration can be determined. This developed method can detect miRNA as low as 3.7 × 10?15m with remarkable specificity. Moreover, it is successfully used to inspect the expression of miRNA in biological samples. Therefore, adamantane derivatives functionalized AuNPs are demonstrated to offer a novel platform for biosensing and the miRNA sensing strategy may find a broad spectrum of practical applications.  相似文献   

14.
This review concerns nanoparticles collected in the form of nanopowder or a colloidal solution by laser ablating a solid target that lies in a gaseous or a liquid environment. The paper discusses the advantages of the method as compared with other methods for nanoparticle synthesis, outlines the factors on which the properties of the produced nanoparticles depend, explains the mechanisms and models involved in the generation of nanoparticles by laser ablation, clarifies the differences between nanoparticle generation in gaseous and liquid environments, presents some experimental desigins and equipment used by the several groups for nanoparticle generation by laser ablation, describes the techniques used for “tuning” the width of the nanoparticles size distribution, and finally presents a few interesting examples of nanoparticles generated by laser ablation.  相似文献   

15.
《Composite Interfaces》2013,20(9):873-892
Zirconia nanoparticles were synthesized by a sol–gel route and dispersed into an epoxy base for structural adhesives. Nanoparticles were used as-synthesized or after calcination. Moreover, the effect of silane functionalization was also investigated. According to preliminary tensile mechanical tests on bulk nanocomposite samples, calcined and untreated zirconia nanoparticles were selected for the preparation of adhesives with various filler contents. The glass transition temperature increased up to a filler content of 1 vol% and then decreased, probably due to the concurrent and contrasting effects of chain blocking and reduction of the crosslinking degree. Also tensile modulus, stress at break and fracture toughness of bulk adhesives samples were positively affected by the presence of an optimal amount of zirconia nanoparticles. Mechanical tests on single lap aluminium bonded joints indicated that zirconia nanoparticles led to relevant enhancements of the shear strength of the joints. In particular, the shear strength increased by about 60% for an optimal filler content of 1 vol%, and an adhesive failure mechanism was evidenced for all the tested specimens. Concurrently, a significant decrease of the equilibrium contact angle with water was observed for adhesives containing zirconia nanoparticles. It can therefore be concluded that the addition of zirconia nanoparticles can effectively improve epoxy adhesives, both by increasing their mechanical properties and by enhancing the interfacial wettability with an aluminium substrate.  相似文献   

16.
In this paper we overview our recent studies of anisotropic noble metal (e.g. gold and silver) nanoparticles, in which a combination of theory and experiment has been used to elucidate the extinction spectra of the particles, as well as information related to their surface enhanced Raman spectroscopy. We used wet-chemical methods to generate several structurally well-defined nanostructures other than solid spheres, including silver nanodisks and triangular nanoprisms, and gold nanoshells and multipods. When solid spheres are transformed into one of these shapes, the surface plasmon resonances in these particles are strongly affected, typically red-shifting and even splitting into distinctive dipole and quadrupole plasmon modes. In parallel, we have developed computational electrodynamics methods based on the discrete dipole approximation (DDA) method to determine the origins of these intriguing optical features. This has resulted in considerable insight concerning the variation of plasmon wavelength with nanoparticle size, shape and dielectric environment, as well as the use of these particles for optical sensing applications.  相似文献   

17.
阚彩侠  蔡伟平  张立德 《物理》2002,31(3):146-150
芯-壳结构复合纳米颗粒因其独特结构而具有许多奇异的性质,尤其体现在可人工设计和可控的光学性质上:根据不同的性质要求,通过改变组分和壳层与芯部的相对尺寸来实现光学性质在很宽波段范围内的可调特性,这一特性在光敏器件(如光开关,光过滤器)以及下一代的纳米光子光等很多领域有着广阔的应用前景,并在目前红外材料的改性上也会大显身手,文章介绍了几种芯-壳复合纳米颗粒的合成及其性质研究现状,并作相应的展望。  相似文献   

18.
Electrical device development is driven by miniaturization and possibilities to use new chemical and physical effects. Nanotechnology offers both aspects. The structural dimensions of materials and devices are small and because of that large exchange surfaces are provided but also effects like quantum effects may occur and be used to get new or at least improved properties of nanostructured materials and devices.Nanoparticles are of special interest because of their nanodimensions in all three directions, so that nanoeffects become most prominent. They can be synthesized in solid materials, in liquids and in gases. Gas synthesis has several advantages compared to the other phases, especially the high cleanliness which can be achieved. In case of electrical devices the particles have to be deposited onto substrates in a structured way.The substrate may consist out of microelectronic devices in which the deposited nanoparticles are introduced for the basic function. In case of a transistor this would be the gate function, in case of a sensor this would be the sensing layer, where the contact with the measurement object takes place. For two kinds of particles SnO2 and PbS, synthesized in the gas phase, we demonstrate the way how to create devices with improved sensor properties.  相似文献   

19.
利用吸氢再还原法,进行逐步还原反应,合成了一系列大小的铂纳米颗粒;透射电镜和X光衍射分析表征的结果表明,铂颗粒是逐步长大的,经过32次生长,铂颗粒的平均粒径从1.8nm增加到14.1nm,平均增加步长约为0.4nm,且粒子均具较好的单分散性.  相似文献   

20.
乐琳 《光谱实验室》2010,27(5):2086-2088
利用对离子复合凝聚法,以EDTA为对离子,戊二醛为交联剂,壳聚糖(CS)为原料制备了CS纳米粒子。用动力学光散射分析(DLS)、透射电子显微镜(TEM)、FTIR对合成的CS纳米粒子进行了表征。表征结果表明,采用该方法合成的CS纳米粒子约为70nm,CS和EDTA通过电荷吸引凝聚成纳米粒子。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号