首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Near-field scanning optical microscopy is used to investigate the waveguiding properties of optical micro/nanofibres (MNFs) by means of detecting optical power carried by evanescent waves. Taper drawn silica and tellurite MNFs, supported on low-index substrates, are used to guide a 532-nm-wavelength light beam for the test. Modification of the single-mode condition of the MNF in the presence of a substrate is observed. Spatial modulation of the longitudinal field intensity (with a 195-nm period) near the output end of a 760-nm-diameter silica MNF is well resolved. Energy exchange through evanescent coupling between two parallel MNFs is also investigated.  相似文献   

2.
When the techniques of integrating the variation of the conventional DVD,the high-density multilevel run-length pit depth and width simultaneously are adopted to limited read-only optical storage method is achieved. The dynamic range of readout signal is greatly enlarged in comparison with keeping one parameter varied, and the recording levels number can be obviously increased. The discs can be manufactured using standard photoresist mastering and replication techniques with great compatibility to conventional binary read-only discs. Experimental results show that eight-level read-only optical disc can be realized and the capacity can be increased to 20 GB.  相似文献   

3.
    
We theoretically demonstrate the feasibility of using a grating-waveguide structure (GWS) as a loss-tolerant, narrow-band reflector in the UV. We simulate device operation using a Green-function technique. Our numerical simulations indicate that a GWS with a 25-nm grating can be used as a 95% reflector for 157-nm light, even in the presence of intensity absorptions of 50 cm-1. Received: 23 July 2002 / Published online: 22 November 2002 RID=\"*\" ID=\"*\"Corresponding author. Fax: +49-551/5035-99, E-mail: mbader@llg.gwdg.de  相似文献   

4.
The plasmon waveguide based on double chain of gold cylinders is studied using the finite-difference time-domain method (FDTD). The wavelength of the incident Gaussian beam ranges from 650 to 1200nm, and the corresponding attenuation factors are calculated. We also present a Y-splitter with 90° splitting angle, each branch in the form of double chains. The transmission efficiencies for different wavelengths are evaluated.  相似文献   

5.
于莉媛  曹俊诚 《中国物理快报》2004,21(12):2504-2506
We have calculated the intraband photon absorption coefficients of hot two-dimensional electrons interacting with polar-optical phonon modes in quantum wells. The dependence of the photon absorption coefficients on the photon wavelength λ is obtained both by using the quantum mechanical theory and by the balance-equation theory. It is found that the photon absorption spectrum displays a local resonant maximum, corresponding to LO energy, and the absorption peak vanishes with increasing the electronic temperature.  相似文献   

6.
In this contribution recent results on selective and precise tailoring of triangular gold nanoparticles (NPs) using ns-pulsed laser light are presented. The NPs were prepared by nanosphere lithography and subsequently tailored with ns-pulsed laser light using different fluences and wavelengths. The method is based on the size and shape dependent localized surface plasmon polariton resonance (SPR) of the NPs. We will demonstrate that the gap size between triangular NPs can be tuned from approximately 102±14 nm to 122±11 nm, due to a shape change of the NP from triangular to oblate. These morphological changes are accompanied by a significant shift of the surface plasmon resonance from λSPR=730 nm to λSPR=680 nm. Most importantly if the laser wavelength is chosen such that the dipolar SPR is excited, the hexagonal order of the NPs remains intact after irradiation, in contrast to excitation via the quadrupole SPR or within the interband transition. A tuneable gap size and the conservation of the hexagonal order of the NP array is the precondition for applications, where the NPs should serve as anchor points, e.g. for functional molecular nanowires, which can be used to utilize molecular devices.  相似文献   

7.
8.
焦小瑾  王颖  鲁拥华  明海  谢建平 《光学学报》2003,23(11):281-1286
微孔激光器作为应用于近场光信息存储系统中的一种新型光源,它的出射光斑的近场特性对于近场光存储是十分重要的。针对纳米孔径运用角谱进行Fox-Li数值迭代,得到不同孔径微孔激光器的基模光强分布,然后运用二维非线性时域有限差分法分析微孔激光器出射端即微孔金属膜的近场光学性质,模拟计算了不同孔径和厚度的微孔金属膜的光强近场分布,从应用于近场光存储的角度,给出反映其近场光学特性的相关数据。发现由于TM模式下金属存在局域表面等离子增强效应,使得其出射强度比TE模式高一个数量级,从而更适于作为实际中近场光存储系统和原理试验的光学头。  相似文献   

9.
Three types of objective lens (OL), i.e., circular, annular and one-dark-ring, are presented to control the ratio, called aspect ratio (AR), of the longitudinal size and the transverse size of focal spots of micro-focus-region of high numerical aperture (NA) OL. The AR can be varied from 7.1 to 2.7 in the case of using a circular OL with NA changes from 0.7 to 1.4. By employing an annular OL, the transverse size of the central lobe of micro-focus-region decreases but its longitudinal size increases, so that the AR increases several times with respect to the case of using a circular OL. However, using a one-dark-ring OL, one can reduce either both transverse and longitudinal sizes or only the longitudinal size of focal spot, so that the AR obtained with a one-dark-ring OL is about 70% of that obtained with a circular OL. Such lenses can be useful for many applications such as sub-microfabrication and three-dimensional data storage using multi-photon absorption process.  相似文献   

10.
One-dimensional photonic crystals with a defect layer of CdS were fabricated. The observed enhancement of two-photon absorption (TPA) in the CdS layer can be attributed to the intensified optical field confined within the defect layer of the photonic crystal. The results show that the enhancement of TPA coefficient depends basically on the number of periods of the photonic crystal and the defect mode position in the photonic band gap. The observation agrees qualitatively with the expectations of a computation by matrix transfer formulation.  相似文献   

11.
Bilayer Sb/Se films are irradiated with 12 ns pulses from an ArF laser (extended areas) and from a focused Ar+ laser (micron-sized areas). Real-time reflectivity measurements are used to determine if the process occurs within the solid or liquid phase and the transformation time, in addition to measure the optical contrast and the medium sensitivity. Transmission electron microscopy is used to analyze the structure of the transformed areas and the medium resolution. The results show that mixing is initiated by preferential melting at the grain boundaries and an amorphous phase is produced upon irradiation at high energy densities. Finally, the characteristics of the mixing process in Sb/Se films as a write-once optical recording mechanism are discussed in terms of the sensitivity and resolution of the recorded spots and the time required for recording.  相似文献   

12.
The influence of surface effects on the temperature dependent photoluminescence (PL) spectra from individual ZnO nanowires has been studied. It is found that the surface effects of the nanowire are very important in both ultraviolet (UV) and visible emission. We propose a new luminescence mechanism based on the recombination related to oxygen vacancies to explain the temperature dependent visible emission, which is significantly influenced by the carrier depletion and band bending caused by surface effects. In addition, the observed attenuation of UV emission with increasing temperature is ascribed to the decreasing depletion region and the increasing surface states related nonradiative recombination.  相似文献   

13.
A new technique to obtain the oscillator strength of select rare-earth optical transitions in nanostructured dielectric materials (nanophosphors) is presented. It is based on the experimentally observed nanophosphor lifetime dependence on the embedding medium. A constant oscillator strength and parity-allowed electric dipole transitions of the RE ion emission are assumed. The oscillator strength is obtained from the slope of the 1/τij vs. n(n2+2)2 plot, where τij is the radiative lifetime of transition between states i and j, and n is the index of refraction of the embedding medium. The use of the technique is illustrated for the Y 2SiO5:Ce nanophosphor.  相似文献   

14.
In some technological applications, optical systems that produce a high depth of focus and superresolving transversal responses are required. In this paper we present a pupil design consisting in a phase pupil with binary amplitude, that added to a conventional optical system, can accomplish these goals. The pupil function is characterized by a complex amplitude that consists basically in combining two annular lenses with different focal length. Meanwhile the central portion of the pupil has an amplitude equal to 0, the external portion is modulated with two quadratic phases each one covering an annular zone. One of the phases corresponds to a convergent lens and the other to a divergent lens. The effect on the incident wavefront is to redirect the light in front of and behind the best image plane (BIP) producing a widened focus. The evolution of the transverse gain for the extended focus is also studied. Experimental results are given, and they confirm the extended focus and the superresolving behavior of the proposed pupil function.  相似文献   

15.
A multiparameter fitting with additional parameters for film inhomogeneity based on transmission results is used to get film inhomogeneity information and to compare different models for film structure. For a number of evaporated materials similar results from transmission fitting have been obtained by using a model consisting of two sublayers with a constant difference in refractive indices between them, either with a thin sublayer in the contact with a substrate or with air. As additional information, we obtained the film physical thickness result from step profile measurements for an oxygen-doped Y2O3 film on a fused silica and we compared it with the fit results for this coating. The result closest to the profilometry one has been achieved for a model with a thinner sublayer in contact with the substrate. The differences are great enough to assert that Y2O3 films on a fused silica possess a higher refractive index in the first stages of growth and then, after some transition, the main material with smaller refractive index grows on it.  相似文献   

16.
We theoretically investigate the electronic transport properties through a rectangular potential barrier embedded in armchair-edge graphene nanoribbons (AGNRs) of various widths. Using the Landauer formula and Dirac equation with the continuity conditions for all segments of wave functions at the interfaces between regions inside and outside the barrier, we calculate analytically the conductance and Fano factor for the both metallic and semiconducting AGNRs, respectively. It is shown that, by some numerical examples, at Dirac point the both types of AGNRs own a minimum conductance associated with the maximum Fano factor. The results are discussed and compared with the previous relevant works.  相似文献   

17.
Nanophotonic structures combining electronic confinement in nanocrystals with photon confinement in photonic structures are potential building blocks of future Si-based photonic devices. Here, we present a detailed optical investigation of active planar waveguides fabricated by Si+-ion implantation (400 keV, fluences from 3 to 6×1017 cm−2) of fused silica and thermally oxidized Si wafers. Si nanocrystals formed after annealing emit red-IR photoluminescence (PL) (under UV-blue excitation) and define a layer of high refractive index that guides part of the PL emission. Light from external sources can also be coupled into the waveguides (directly to the polished edge facet or from the surface by applying a quartz prism coupler). In both cases the optical emission from the sample facet exhibits narrow polarization-resolved transverse electric and transverse magnetic modes instead of the usual broad spectra characteristic of Si nanocrystals. This effect is explained by a theoretical model which identifies the microcavity-like peaks as leaking modes propagating below the waveguide/substrate boundary. We present also permanent changes induced by intense femtosecond laser exposure, which can be applied to write structures like gratings into the Si-nanocrystalline waveguides. Finally, we discuss the potential for application of these unconventional and relatively simple all-silicon nanostructures in future photonic devices.  相似文献   

18.
The role of organic amines in the colloidal synthesis of CdSe quantum dots (QDs) has been studied. CdSe QDs were synthesized from the source solutions containing 5 vol% of amines having various alkyl chain lengths, stereochemical sizes and electron donation abilities. The role of the additional amines was evaluated on the basis of the photoluminescence (PL) properties such as PL wavelength and intensity of the obtained CdSe QDs. The observed PL spectra were explained by the fact that the amines behaved as capping ligands on the surface of the QDs in the product colloidal solution and complex ligands for cadmium in the source solutions. It was shown that the particle size was controlled by the diffusion process depending on the mass and stereochemical shape of the amines, and the luminescence intensity increased with the increasing electron donation ability and capping density of the amines.  相似文献   

19.
A theory is presented for propagation of electromagnetic waves through one-dimensional magnetic Bragg structures (magneto-photonic crystals). Within the self-consistent Green-function technique the transfer matrices and magneto-optical characteristics are derived in terms of circularly polarized waves propagating in periodical arrays of alternating magnetic and dielectric layers. For finite-thickness magneto-photonic crystals, the Faraday rotation and other magneto-optical responses are demonstrated to change considerably in the spectral range of stop-bands, the magnetic modulation of the in-plane reflection intensity being essentially enhanced.  相似文献   

20.
X.H. Wang  P. Chang  Y. Tang 《Physics letters. A》2008,372(16):2900-2903
Sulfur-doped zinc oxide (ZnO) nanowires have been successfully synthesized by an electric field-assisted electrochemical deposition in porous anodized aluminum oxide template at room temperature. X-ray diffraction and the selected area electron diffraction results show that the as-synthesized nanowires are single crystalline and have a highly preferential orientation. Transmission electron microscopy observations indicate that the nanowires are uniform with an average diameter of 120 nm and length up to several tens of micrometers. Room-temperature photoluminescence is observed in the doped ZnO nanowires, which exhibits a violet emission and blue emissions besides the typical photoluminescence spectrum of a single crystal ZnO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号