首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Tantalum nitride (TAN) thin films are achieved on Si(111) and SS317L substrates by cathodic vacuum arc technique, which is rarely reported in the literature. The crystal structure, composition and surface morphology of the films are characterized by x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), auger electron spectroscopy, and atomic force microscopy, respectively. The influence of substrate negative bias on crystal structure, composition, surface morphology of the TaN films is systematically studied. At the substrate bias of 0 V and -50 V, the amorphous TaN film is obtained. As the bias increases to -100 V, cubic TaN phase can be found. Stoichiometric TaN with hexagonal lattice preferred (300) orientation is prepared at a bias of -200 V. Combine the XRD and XPS results, the binding energy value of 23.6eV of Ta 4f(7/2) is contributed to hexagonal TaN. Compared to other techniques, TaN thin films fabricated by cathodic vacuum arc at various substrate biases show different microstructures.  相似文献   

2.
Highly oriented aluminium nitride (AIN) films are grown on p-Si (100) substrates by pulsed laser deposition, and their characteristics of structure and composition are studied by x-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy. The results show that the deposited films exhibit good crystalline properties with a sharp x-ray diffraction peak at 2θ= 33.15 ° corresponding to AIN h (100) crystalline orientation. The influences of substrate temperature and ambient nitrogen (N2) pressure on the crystallinity of A1N films are remarkable. At room temperature, when the ambient N2 pressure arises from 5 × 10^-6 Pa to 5 Pa, the crystallinity of the film becomes better. When the substrate temperature is 600℃, the film has the best crystallinity at 0.05 Pa. Furthermore, the effects of substrate temperature and ambient N2 pressure on the combination of A1-N bonds and surface morphology of AIN films are also studied.  相似文献   

3.
ZnS:Mn thin films are grown on GaN substrates by pulsed laser deposition.The structure,morphology and optical properties are investigated by x-ray diffraction,scanning electron microscopy and photoluminescence(PL).The obtained ZnS:Mn thin films are grown in preferred orientation along β-ZnS(111) direction corresponding to crystalline structure of cubic phase.The deposition temperature has an obvious effect on the structure,surface morphology and optical properties of ZnS:Mn thin films.PL measurements show that there are two emission bands located at 440 nm and 595 nm when the films are deposited at temperatures from 100℃ to 500℃.The relative integrated intensity of the blue emission and orange-red emission is determined by the deposition conditions.At the proper deposition temperature of 300℃,the color coordinate is closest to(0.33,0.33).The ZnS:Mn films on GaN substrates can exhibit white fight emission.  相似文献   

4.
A new electroluminescence device is fabricated by microwave plasma chemical vapour deposition system and electron beam vapour deposition system. It is comprised of highly doped silicon/diamond/boron/nitrogen-doped diamond/indium tin oxide thin films. Effects of process parameters on morphologies and structures of the thin films are detected and analysed by scanning electron microscopy, Raman spectrometer and x-ray photoelectron spectrometer. A direct-current (DC) power supply is used to drive the electroluminescence device. The blue light emission with a luminance of 1.2 cd·m 2 is observed from this double-doped diamond thin film electroluminescence device at an applied voltage of 105 V.  相似文献   

5.
Zn0.95Co0.05 O precipitate-free single crystal thin films were synthesized by a dual beam pulsed laser deposition method.The films form a wurtzite structure whose hexagonal axis is perpendicular or parallel to the plane of the surface depending on the C-plane (0001) or R-plane (11 ˉ 20) sapphire substrate.Based on the results of high-resolution transmission electron microscopy and x-ray diffraction,C-plane films show larger lattice mismatch.The films exhibit magnetic and semiconductor properties at room temperature.The coercivity of the film is about 8000 A/m at room temperature.They are soft magnetic materials with small remanent squareness S for both crystal orientations.There is no evidence to show that the anisotropy is fixed to the hexagonal axis (C-axis) for the wurtzite structure.  相似文献   

6.
Amorphous silicon oxide containing nanocrystalline silicon grain(nc-SiO_x:H) films are prepared by a plasmaenhanced chemical vapor deposition technique at different negative substrate bias voltages.The influence of the bias voltage applied to the substrate on the microstructure is investigated.The analysis of x-ray diffraction spectra evidences the in situ growth of nanocrystalline Si.The grain size can be well controlled by varying the substrate bias voltage,and the largest size is obtained at 60 V.Fourier transform infrared spectra studies on the microstructure evolutions of the nc-SiO_x:H films suggest that the absorption peak intensities,which are related to the defect densities,can be well controlled.It can be attributed to the fact that the negative bias voltage provides a useful way to change the energies of the particles in the deposition process,which can provide sufficient driving force for the diffusion and movement for the species on the growing surface and effectively passivate the dangling bonds.Also the larger grain size and lower band gap,which will result in better photosensitivity,can also be obtained with a moderate substrate bias voltage of 60 V.  相似文献   

7.
ZrO2 thin films were deposited by using an electron beam evaporation technique on three kinds of lithium triborate (LIB3O5 or LBO) substrates with the surfaces at specified crystalline orientations. The influences of the LBO structure on the structural and optical properties of ZrO2 thin films are studied by spectrophotometer and x-ray diffraction. The results indicate that the substrate structure has obvious effects on the structural and optical properties of the film: namely, the ZrO2 thin film deposited on the X-LBO, Y-LBO and Z-LBO orients to m(-212), rn(021) and o(130) directions. It is also found that the ZrO2 thin film with m(021) has the highest refractive index and the least lattice misfit.  相似文献   

8.
TiO2-xNx thin films are deposited onto Si(100) and quartz substrates by arf magnetron sputtering method using a titanium metal disc as a target in Ar, N2, and 02 atmospheres. The substrate temperature is kept at 300℃. The O2 and Ar gas flow rates are kept to be constants and the N gas flow rate is varied. TiO2-xNx films with different N contents are characterized by x-ray diffraction and x-ray photoelectron spectroscopy. The results indicate that the TiO2-xNx thin films can be obtained at 13% N and 15% N contents in the film, and the films with mixed TiO2 and TiN crystal can be obtained at 13% N and 15% N contents in the film. In terms of the results of x-ray photoelectron spectroscopy, N ls of β-N (396 eV) is the main component in the TiO2-xNx thin films. Because the energy level of β-N is positioned above the valence-band maximum of TiO2, an effective optical-energy gap decreases from 2.8 eV (for pure TiO2 film deposited by the same rf sputtering system) to 2.3 eV, which is verified by the optical-absorption spectra.  相似文献   

9.
Fe~(2+):ZnSe thin films are prepared on sapphire substrate at room temperature by electron beam evaporation and then annealed in vacuum(about 1 × 10~(-4) Pa) at different temperatures. The influences of thermal annealing on the structural and optical properties of these films such as grain size and optical transmittance are investigated. The x-ray diffraction patterns show that the Fe~(2+):ZnSe thin film is preferred to be oriented along the(111) plane at different annealing temperatures.After the film is annealed, the full-width-at-half-maximum( FWHM) of the x-ray diffraction peak profile(111) of the film decreases and its crystal quality is improved. Scanning electron microscope images show that the films are more dense after being annealed. Finally, the sample is used as a saturable absorber in ZBLAN fiber laser. The annealed Fe~(2+):ZnSe thin films can be used to realize stable Q-switching modulation on ZBLAN fiber laser. The results demonstrate that the Fe~(2+):ZnSe thin film is a promising material for generating the high-power pulses of mid-infrared Q-switched fiber lasers.  相似文献   

10.
Grain size and its distribution in NiTi thin films sputter-deposited on a heated substrate have been investigated using the small angle x-ray scattering technique. The crystalline particles have a small size and are distributed over a small range of sizes for the films grown at substrate temperatures 370 and 420℃. The results show that the sizes of crystalline particles are about the same. From the x-ray diffraction profiles, the sizes of crystalline particles obtained were 2.40nm and 2.81nm at substrate temperatures of 350 and 420℃, respectively. The morphology of NiTi thin films deposited at different substrate temperatures has been studied by atomic force microscopy. The root mean square roughness calculated for the film deposited at ambient temperature and 420℃ are 1.42 and 2.75nm, respectively.  相似文献   

11.
For the deposition of cubic boron nitride thin films in Ar–N2–BF3–H2 system by dc jet plasma chemical vapor deposition, the role of dc substrate bias ranging from -70 V to -150 V was investigated. A critical bias voltage was observed for the formation of cBN phase. The cBN content in the film increased with bias voltage and reached a maximum at the bias voltage of -85 V. Increasing the bias voltage further caused a decrease in cBN content and peeling of the films from the substrate. By combining the results of infrared spectroscopy, Raman spectroscopy and X-ray diffraction, the bias voltage was also found to strongly affect the crystal size, crystal quality and residual stress of the deposited films. A bias voltage a little higher than the critical value was demonstrated to be favorable for the deposition of a high-quality cBN film with large crystal size and low residual stress. Received: 13 June 2000 / Accepted: 21 June 2000 / Published online: 23 August 2000  相似文献   

12.
Ti-Si-N thin flms with different silicon contents are deposited by a cathodic arc technique in an Ar+N2+SiH4 mixture atmosphere. With the increase of silane flow rate, the content of silicon in the Ti-Si-N films varies from 2.0 at. % to 12.2 at. %. Meanwhile, the cross-sectional morphology of these films changes from an apparent columnar microstructure to a dense fine-grained structure. The x-ray diffractometer (XRD) and x-ray photoelectron spectroscopy (XPS) results show that the Ti-Si-N film consists of TiN crystallites and SiNx amorphous phase. The corrosion resistance is improved with the increase of silane flow rate. Growth defects in the films produced play a key role in the corrosion process, especially for the local corrosion. The porosity of the films decreases from 0.13%to 0.00032% by introducing silane at the flow rate of 14sccm.  相似文献   

13.
Hafnium oxide thin films doped with different concentrations of yttrium are prepared on Si(100) substrates at room temperature using a reactive magnetron sputtering system.The effects of Y content on the bonding structure,crystallographic structure,and electrical properties of Y-doped HfO_2 films are investigated.The x-ray photoelectron spectrum(XPS) indicates that the core level peak positions of Hf 4 f and O 1 s shift toward lower energy due to the structure change after Y doping.The depth profiling of XPS shows that the surface of the film is completely oxidized while the oxygen deficiency emerges after the stripping depths have increased.The x-ray diffraction and high resolution transmission electron microscopy(HRTEM) analyses reveal the evolution from monoclinic HfO_2 phase towards stabilized cubic HfO_2 phase and the preferred orientation of(111) appears with increasing Y content,while pure HfO_2 shows the monoclinic phase only.The leakage current and permittivity are determined as a function of the Y content.The best combination of low leakage current of 10-7 A/cm~2 at 1 V and a highest permittivity value of 29 is achieved when the doping ratio of Y increases to 9 mol%.A correlation among Y content,phase evolution and electrical properties of Y-doped HfO_2 ultra-thin film is investigated.  相似文献   

14.
The CrAlN films were deposited on silicon and stainless steel substrates by unbalanced magnetron sputtering system. The influence of substrate bias on deposition rate, composition, structure, morphology and properties of the CrAlN films was investigated. The results showed that, with the increase of the substrate bias voltage, the deposition rate decreased accompanied by a change of the preferred orientation of the CrAlN film from (2 2 0) to (2 0 0). The grain size and the average surface roughness of the CrAlN films declined as the bias voltage increases above −100 V. The morphology of the films changed from obviously columnar to dense glass-like structure with the increase of the bias voltage from −50 to −250 V. Meanwhile, the films deposited at moderate bias voltage had better mechanical and tribological properties, while the films deposited at higher bias voltage showed better corrosion resistance. It was found that the corrosion resistance improvement was not only attributed to the low pinhole density of the film, but also to chemical composition of films.  相似文献   

15.
刘海永  张敏  林国强  韩克昌  张林 《物理学报》2015,64(13):138104-138104
采用脉冲偏压电弧离子镀技术在单晶硅基片及石英玻璃上制备了一系列均匀透明的Cr-O薄膜. 用场发射扫描电子显微镜、X射线衍射仪、X射线光电子谱、纳米压痕仪、紫外可见光分光光度计等方法对薄膜的表面形貌、膜厚、相结构、成分、元素的化学价态、硬度和光学性能等进行表征, 主要研究了偏压幅值对薄膜结构和性能的影响. 结果表明, 施加偏压可使薄膜的沉积质量明显提高, 其相结构由非晶态转变为晶体态, 并随着偏压幅值的增加, 由Cr2O3相向CrO相转变; 薄膜的硬度先增大后减小, 当偏压为-300 V时, 硬度达到最大值24.4 GPa; 薄膜具有良好的透光率, 最高可达72%; 当偏压为-200 V时, 薄膜的最大光学帯隙为1.88 eV.  相似文献   

16.
射频磁控溅射低温制备非晶铟镓锌氧薄膜晶体管   总被引:1,自引:1,他引:0  
利用射频磁控溅射技术室温制备了铟镓锌氧(IGZO)薄膜,采用X射线衍射(XRD)表征薄膜的晶体结构,原子力显微镜(AFM)观察其表面形貌,分光光度计测量其透光率。结果表明:室温制备的IGZO薄膜为非晶态且薄膜表面均匀平整,可见光透射率大于80%。将室温制备的IGZO薄膜作为有源层,在低温(<200℃)条件下成功地制备了铟镓锌氧薄膜晶体管(a-IGZO TFT),获得的a-IGZO-TFT器件的场效应迁移率大于6.0 cm2.V-1.s-1,开关比约为107,阈值电压为1.2 V,亚阈值摆幅(S)约为0.9 V/dec,偏压应力测试a-IGZO TFT阈值电压随时间向右漂移。  相似文献   

17.
采用直流磁控溅射和后退火工艺在掺氟的SnO2(FTO)导电玻璃衬底上制备VO2薄膜, 研究了不同退火时间和不同比例的氮氧气氛对VO2薄膜性能的影响, 对VO2薄膜的结晶取向、表面形貌、表面元素的相对含量和透过率随波长变化进行了测试分析, 结果表明在最佳工艺条件下制备得到了组分相对单一的VO2薄膜. 基于FTO/VO2/FTO结构在VO2薄膜两侧的透明导电膜上施加电压并达到阈值电压时, 观察到了明显的电流突变. 当接触面积为3 mm×3 mm时, 阈值电压为1.7 V, 阈值电压随接触面积的增大而增大. 与不加电压的情况相比, FTO/VO2/FTO结构在电压作用下高低温的红外透过率差值可达28%, 经反复施加电压, 该结构仍保持性能稳定, 具有较强的电致调控能力.  相似文献   

18.
The relationship between the structure and the microwave dielectric properties of epitaxial Ba0.5Sr0.5TiO3 (BST) films has been investigated. Single-phase BST films (40-160 nm) have been deposited onto (100) MgO substrates by pulsed laser deposition. As-deposited films show a significant tetragonal distortion. The in-plane lattice parameters (a) are always larger than the surface normal lattice parameters (c). The tetragonal distortion depends on the thickness of the films and the post-deposition annealing conditions. Films annealed at 900 °C show less tetragonal distortion than the as-deposited film and the films annealed at higher temperatures. The distortion in the film is due to stress caused by the lattice mismatch and thermal expansion coefficient differences between the film and the substrate. The dielectric constant and its change with dc bias voltage of BST films on MgO at microwave frequencies increase with increasing annealing temperature from 900 °C to 1200 °C, which corresponds to an increase in the tetragonal distortion.  相似文献   

19.
《Current Applied Physics》2019,19(12):1404-1413
In this study, nanostructured indium selenide (InSe) thin films were deposited on Indium tin oxide (ITO)-coated glass substrate using electrochemical deposition (ECD) from aqueous solution containing In(SO4)3.H2O and SeO2. The effects of deposition potential (−0.70 to −1.35 V), time (30-3600 s), temperature (25-80 °C) and pH (2.58 for A samples; 2 for B samples and 1.45 for C samples) on growth of the InSe thin films were examined in terms of their structural, morphological and optical properties. X-ray diffraction (XRD) analysis confirmed that the InSe thin films are in polycrystalline structure. It was found that the values of grain size decreased and the full width half maximum (FWHM) values increased with the increasing deposition potential. According to the absorption measurements, optical properties of the thin films varied with changes in deposition conditions. Based on the atomic force microscopy (AFM) and the scanning electron microscopy (SEM) images, surface morphology of the thin films was influenced by deposition potential and pH of the electrolyte, and non-homogeneous depositions distributed across the entire surface were observed. In addition, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and fourier transform infrared spectroscopy (FT-IR) analyses were used to further examine crystal quality, vibration, chemical binding conditions, In/Se orientation and structure of the prepared InSe thin films. When Raman results are examined, the B12 sample shows a more intensity and narrow peak at 248 cm−1. XPS measurements sowed that A6 sample exhibited more growth in low potential for a long time and better film stoichiometry compared to the other three samples. Also, FT-IR studies prove the presence of InSe. According to the results, the film did not form at low temperatures and short times. However, the film formation began with the increasing deposition temperature and time at the low potential value of −0.730 V. But, it is clear that a high quality film can be obtained in cathodic potential with −1.3 V and shorter deposition time with 300 s at room temperature respectively. Overall results showed that the high quality thin films can be obtained by the ECD technique. However, deposition conditions must be sensitively adjusted to control morphology of the electrodeposited nanoparticles.  相似文献   

20.
 The semiconductive perovskite-type oxide SrFeO3-x (x<0.16) (SFO) thin films have been directly fabricated on (001)SrTiO3 and (001)LaAlO3 single crystal substrates by pulsed laser deposition(PLD) under high oxygen partial pressure of 100 Pa. The SFO thin films were (110) oriented. The x-ray photoelectron spectroscopy (XPS) analysis showed that the surface of SFO thin film has strong gas absorption capability. The resistance versus temperature has been measured in the temperature range from 77 K to 300 K. The SFO thin film showed typical semiconductive property. Dependence of resistance of SFO thin film on oxygen pressure was measured and result showed that the SFO thin film had better oxygen sensitive property. Received: 14 May 1996/Accepted: 15 August 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号