首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
The influence of predosed antimony on the adlayer structures of carbon monoxide and on the electro-oxidation kinetics of formic acid on Pt(100) and Pt(111) in 0.1M HClO4 is examined by means of in-situ infrared spectroscopy in conjunction with cyclic voltammetry. Preadsorbed antimony inhibits the adsorption of CO on these surfaces, the attenuation in CO coverage being accompanied by a selective removal of the two-fold bridging geometry as deduced from the relative νCO band intensities. At saturation antimony coverages, the CO binding is exclusively terminal on Pt(100) and Pt(111). These findings are consistent with the adsorption of antimony at multi-fold sites, yielding microscopically intermixed adlayers with CO. The electro-oxidation rates of formic acid are enhanced substantially by preadsorbed antimony on Pt(100) and Pt(111). The real-time infrared spectra in the C-O stretching region and the CO coverages thereby deduced in the presence of predosed antimony under reactive voltammetric conditions suggest that the metal adatoms are actively involved in the dissociation of formic acid. The origins of the enhanced electrocatalytic activity of the bimetallic Sb/Pt surfaces are discussed in terms of geometric and chemical effects.  相似文献   

2.
The valence-band structure and the vibrational modes of CO adsorbed on nickel-promoted TiO2(110) surfaces as a function of CO exposure have been studied by means of ultraviolet photoelectron spectroscopy (UPS) and high-resolution electron energy-loss spectroscopy (HREELS). It is found that CO exists in molecular form at room temperature on the nickel-promoted TiO2(110) surfaces and most likely binds to the Ni atoms or nickel-affected sites rather than to the substrate atoms. At saturation coverage, CO molecules adsorb simultaneously on the 2-fold bridge sites and terminal sites on the (111)-oriented Ni islands deposited upon TiO2(110). The occupation of the edge sites of Ni islands gives rise to an anomalously low frequency of the C---O stretching vibration. This frequency, indicative of a weakened C---O bond, suggests existence of a precursor to the dissociated state.  相似文献   

3.
The lineshape of the carbon-oxygen stretching vibration for CO chemisorbed at the two-fold bridge sites and on top sites of Ni(111) has been measured over the temperature range 80 to 300 K with infrared reflection absorption spectroscopy. The bridge bonded CO undergoes pronounced broadening at higher temperatures while the terminally bonded CO is only slightly broadened. The results are interpreted according to a recent vibrational dephasing model developed for condensed phase molecules. In this model the dephasing is brought about by rapid energy exchange between low frequency modes of the substrate and low frequency modes of the molecule which are anharmonically coupled to the high frequency band being studied.  相似文献   

4.
We use optical sum-frequency generation to investigate the stretching vibrations of cyanide (CN) molecules chemisorbed from aqueous electrolytes on single-crystalline Pt(111)- and Pt(110)-electrode surfaces. For clean and well-ordered Pt(111) electrodes, a single vibrational band between 2080 and 2150 cm–1 with a nonlinear frequency dependence on the potential is observed and assigned to the CN stretching vibration of chemisorbed cyanide. A second band between 2145 and 2150 cm–1 with very weak potential dependence appears on a surface which was subjected to oxidation-reduction cycles and is attributed to cyanide associated with a microscopically disordered surface. This assignment is supported by preliminary results for a Pt(110) single-crystal electrode. On a well-ordered (110) surface a single and potential-dependent cyanide vibration between 2070 and 2112 cm–1 is observed. After oxidation of the cyanide and readsorption, this band is replaced by a higher frequency band at 2144 cm–1 which is essentially not potential-dependent. Occasionally, additional vibrational bands at lower frequencies not reported in corresponding IR studies are observed on Pt(111).Paper presented at the 129th WE-Heraeus-Seminar on Surface Studies by Nonlinear Laser Spectroscopies, Kassel, Germany, May 30 to June 1, 1994  相似文献   

5.
The synchrotron radiation from BESSY has been used to measure the photoemission from CO orbitals adsorbed as ordered overlayers on Ni(100) c(2 × 2), Pt(111) c(4 × 2) and Pt(110) (2 × 1)p2mg. Angular distribution patterns of photoelectrons from CO orbitals were recorded with a display-type analyzer. The data were compared with differential photoionization cross sections calculated for free and oriented molecules. The results demonstrate the upright orientation of CO on Ni(100) and Pt(111), while CO on Pt(110) shows a marked difference which can be explained by assuming that the CO molecules are tilted in the [001] directions of Pt(110), yielding a (2 × 1)p2mg superstructure observed in LEED. The tilt angle is estimated to about 20°. The structure model is supported by the shape resonances of the 4σ (5σ) orbitals of CO/Pt(110) as compared to CO/Pt(111).  相似文献   

6.
Fourier transform infrared reflection absorption spectroscopy (FT-IRAS) has been used to probe the non-dissociative adsorption of N2 on an atomically clean Pt(111) single crystal. In contradiction to a previous IRAS study of nitrogen adsorption on a Pt(111) foil at 120 K, no nitrogen infrared (IR) band was observed on a fully annealed Pt(111) surface at 90 K. Following Ar+ ion bombardment, adsorption of nitrogen at 90 K produces an intense IR band at 2222 cm−1 attributed to the N---N stretching mode of molecular nitrogen adsorbed on defect sites produced by ion bombardment. Annealing the Ar+ ion sputtered surface to a temperature above 750 K completely suppresses the adsorption of nitrogen at 90 K. Based on these and other results, we postulate that nitrogen adsorbs at 90 K mainly on monovacancies on platinum. We suggest that this specific adsorption occurs by sigma donation from nitrogen to the base of monovacancy sites which possess a low d-electron density compared to surface Pt atoms.  相似文献   

7.
The adsorption of CO on Pt(111) surfaces has been studied under clean conditions by a highly surface sensitive double-beam infrared reflection spectroscopy (IRS). In contrast to results of other authors two stretching vibrations of adsorbed CO rather than one are detected near 2100cm−1 and 1870cm−1. This is in agreement with recent findings in high-resolution electron energy loss spectroscopy (ELS). The results are discussed in terms of two adsorption sites: CO adsorbed in on-top positions and double coordinated on bridging sites, respectively. Furthermore, a precursor state and a preferential adsorption in islands at low coverage is taken into account.  相似文献   

8.
The surface vibrations of CO adsorbed on Pt(111) single crystal surfaces at 320 K have been studied by electron-energy-loss spectroscopy. At low coverages two vibration modes at 58 and ∼260 meV are observed. For exposures >0.2 Langmuir two additional modes at 45 and 232 meV develop. Considering also the observed LEED structures these vibrations are attributed to CO molecules being adsorbed upright in on-top and bridge sites, respectively.  相似文献   

9.
The coadsorption of Li and H atoms on Pt(001), Pt(110) and Pt(111) surfaces is studied using density functional theory with generalised gradient approximation. In all calculations Li, H and the two topmost layers of the metal were allowed to relax. At coverage of 0.25 mono-layer in a p(2×2) unit cell, lithium adsorption at the hollow site for the three surfaces is favoured over top and bridge sites. The most favoured adsorption sites for H atom on the Pt(001) and Pt(110) surfaces are the top and bridge sites, while on Pt(111) surface the fcc site appears to be slightly favoured over the hcp site. The coadsorption of Li and atomic hydrogen shows that the interaction between the two adsorbates is stabilising when they are far from each other. The analysis of Li, H and Pt local density of states shows that Li strongly interacts with the Pt surfaces.  相似文献   

10.
CO photodesorption from Pt(111) induced by femtosecond laser pulses is probed by IR+visible sum frequency generation (SFG). Steady state analysis of SFG spectra at varying CO pressure and laser fluence allows one to measure a approximately 5 orders of magnitude decrease of the photodesorption rate constant when CO coverage decreases from 0.37 to 0.07 monolayer. We ascribe this effect in the framework of the Menzel-Gomer-Redhead mechanism to electron delocalization in the CO layer. The lifetime of electronic excitation decreases when coverage decreases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号