首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dispersion management of a non-collinear optical parametric chirped-pulse amplifier is presented. A stretcher based on a combination of a grating and a prism pair (grism) is given and analyzed in detail. This combination can provide up to 300 nm acceptance bandwidth and is suitable for parametric amplification of few-cycle pulses. The amplified pulses can be compressed by the dispersion of optical glasses such as SF57 and the residual high-order dispersion may be compensated by adaptive optical filters and chirped mirrors.  相似文献   

2.
We discuss a dual-stage optical parametric chirped-pulse amplifier generating sub-100-fs pulses in the mid-infrared at a repetition rate of 100 kHz. The system is based on a 1064 nm pump laser and a 3–4 μm difference frequency generation seed source derived from the output of a femtosecond fiber laser amplifier. Both lasers are commercially available, are diode-pumped, compact, and allow for turn-key operation. Here, we focus our discussion on the design and dimensioning of the optical parametric chirped-pulse amplifier. In particular, we review the available gain materials for mid-infrared generation and analyze the impact of different stretching scenarios. Timing jitter plays an important role in short-pulse parametric amplifier systems and is therefore studied in detail. The geometry of the amplifier stages is optimized through a full 3-dimensional simulation with the aim of maximizing gain bandwidth and output power. The optimized system yields output pulse energies exceeding 1 μJ and an overall gain larger than 50 dB. The high repetition rate of the pump laser results in an unprecedented average power from a femtosecond parametric system at mid-infrared wavelengths. First experimental results confirm the design and the predictions of our theoretical model.  相似文献   

3.
Multimillijoule chirped parametric amplification of few-cycle pulses   总被引:3,自引:0,他引:3  
The concept of optical parametric chirped-pulse amplification is applied to attain pulses with energies up to 8 mJ and a bandwidth of more than 100 THz. Stretched broadband seed pulses from a Ti:sapphire oscillator are amplified in a multistage noncollinear type I phase-matched beta-barium borate parametric amplifier by use of an independent picosecond laser with lock-to-clock repetition rate synchronization. Partial compression of amplified pulses is demonstrated down to a 10-fs duration with a down-chirped pulse stretcher and a nearly lossless compressor comprising bulk material and positive-dispersion chirped mirrors.  相似文献   

4.
A diode-pumped system for optical parametric generation of wavelength-tunable femtosecond pulses is demonstrated. It comprises an Er-doped fiber mode-locked laser, a fiber chirped-pulse amplifier, and a bulk periodically poled LiNbO(3) (PPLN) optical parametric generator. The parametric generator is pumped at 777 nm with frequency-doubled microjoule pulses from the fiber amplifier and produces 300-fs pulses tunable from 1 to 3microm with output energies up to ~200 nJ. Use of a PPLN nonlinear crystal substantially reduces the pump energies required for efficient parametric generation. Saturated single-pass parametric energy conversion of 38% (internal) has been achieved with only 220 nJ of pump inside the crystal. A parametric generation threshold of 54 nJ is observed, and efficient parametric conversion is obtained with repetition rates up to 200 kHz.  相似文献   

5.
We report the highest energy broadband laser pulses at a center wavelength of 1030 nm based on optical parametric chirped-pulse amplification (OPCPA). We have demonstrated amplification of 1030 nm femtosecond laser pulses from a broadband Yb oscillator to over 6.5 mJ with a total gain of greater than 107 achieved in a single pass through only 56 mm of gain material at a 10 Hz repetition rate. The amplified spectral bandwidth of 10.8 nm affords recompression to a 230 fs pulse duration following amplification. As an alternative to the regenerative amplifier (RA) this system is one of the more promising candidates for realizing compact, high intensity, direct diode-pumped, high repetition rate femtosecond Yb:YAG chirped-pulse amplification (CPA) in laser systems.  相似文献   

6.
We demonstrate an optical parametric chirped-pulse amplifier producing infrared 20 fs (3-optical-cycle) pulses with a stable carrier-envelope phase. The amplifier is seeded with self-phase-stabilized pulses obtained by optical rectification of the output of an ultrabroadband Ti:sapphire oscillator. Energies of -80 microJ with a well-suppressed background of parametric superfluorescence and up to 400 microJ with a superfluorescence background are obtained from a two-stage parametric amplifier based on periodically poled LiNbO3 and LiTaO3 crystals. The parametric amplifier is pumped by an optically synchronized 1 kHz, 30 ps, 1053 nm Nd:YLF amplifier seeded by the same Ti:sapphire oscillator.  相似文献   

7.
Yang X  Xu ZZ  Leng YX  Lu HH  Lin LH  Zhang ZQ  Li RX  Zhang WQ  Yin DJ  Tang B 《Optics letters》2002,27(13):1135-1137
A compact multiterawatt laser system based on optical parametric chirped pulse amplification is demonstrated. Chirped pulses are amplified from 20 pJ to 900 mJ by two lithium triborate optical parametric preamplifiers and a final KDP optical parametric power amplifier with a pump energy of 5 J at 532 nm from Nd:YAG-Nd:glass hybrid amplifiers. After compression, we obtained a final output of 570-mJ-155-fs pulses with a peak power of 3.67 TW, which is the highest output power from an optical parametric chirped pulse amplification laser, to the best of our knowledge.  相似文献   

8.
The properties of optical parametric amplification (OPA) based on non-collinear double quasi-phase matching (NDQPM) with single periodically poled KTP (PPKTP) have been investigated theoretically. The NDQPM includes two different non-linear processes: one is optical parametric generation (OPG) and the other is difference frequency generation (DFG). The investigation of our numerical simulation focuses on the gain bandwidth of dependence upon non-collinear angle, grating period and crystal temperature. At a certain non-collinear angle and grating period with fixed temperature, there exists a broadest gain bandwidths of output mid-infrared pulse at 526 nm pump wavelength and certain signal wavelength in PPKTP. These are an optimal values of non-collinear angles and grating period. By accurately tuning the non-collinear angle or temperature near the optimal non-collinear angle, broadband mid-infrared tuning is obtained and an optimal operation of NDQPM can be realized. In this paper, the solutions of the coupled equations of the cascaded processes were discussed, and the spatial-temporal frequency (STF) band of the output idler pulse is analyzed by taking angular dispersion of amplified pulse beam into account. The idler pulse with a certain angular dispersion can improve the OPA bandwidth significantly. So, optical parametric chirped-pulse amplification can be realized in this configuration. For a broadband NDQPM both the acceptance angles and the acceptance temperature are smaller and the gain bandwidth is sensitive to non-collinear angles and temperature, it is important to control the precision of the non-collinear angles and the temperature in experiment.  相似文献   

9.
A noncollinear optical parametric amplifier is presented that generates transform-limited sub-10-fs pulses that are tunable in both the visible and the near infrared (NIR). The pulse-front-matched pump geometry realizes tilt-free signal amplification, and pulses as short as 6.1 fs can be obtained from 550 to 700 nm. The large angular dispersion of the idler specific to the group-velocity-matching interaction is effectively eliminated by a grating-telescope compensator, and 9-fs NIR pulses are also successfully obtained from 900 to 1300 nm. This is believed to be the first tunable sub-10-fs light source.  相似文献   

10.
Phase-stabilized 12-fs, 1-nJ pulses from a commercial Ti:sapphire oscillator are directly amplified in a chirped-pulse optical parametric amplifier and recompressed to yield near-transform-limited 17.3-fs pulses. The amplification process is demonstrated to be phase preserving and leads to 85-microJ, carrier-envelope-offset phase-locked pulses at 1 kHz for 0.9 mJ of pump, corresponding to a single-pass gain of 8.5 x 10(4).  相似文献   

11.
We describe a method of ultrashort-pulse and ultrafast-pulse-train generation through optical parametric amplification of a laser beat wave. Numerical simulation shows that 250-fs laser pulses at 1.55 μm are generated from a beat-wave seeded optical parametric amplifier pumped by a 30-ps laser at 1064 nm. The pulse compression is attributable to sideband generation and parametric amplification under group velocity mismatch. Our experimental result confirms efficient generation of comb-like sidebands for the mixing waves from such an optical parametric amplifier.  相似文献   

12.
We present a simple and efficient technique for the generation of ultrashort deep-ultraviolet pulses based on four-wave mixing of noncollinear laser pulses in a thin solid. Sub-30-fs pulses (Fourier-limit of 13 fs) centered at 270 nm, with energies up to 6 μJ, were obtained by mixing the fundamental and the second harmonic of a Ti:sapphire amplifier in fused silica. Temporal characterization was performed with a dispersionless self-diffraction FROG setup. Spectra as broad as 20 nm were also obtained that can in principle support sub-4-fs deep-ultraviolet pulses.The results are well described by two-dimensional numerical simulations.  相似文献   

13.
Yu L  Liang X  Li J  Wu A  Zheng Y  Lu X  Wang C  Leng Y  Xu J  Li R  Xu Z 《Optics letters》2012,37(10):1712-1714
In this Letter, we report on what is, to our knowledge, the first experimental demonstration of yttrium calcium oxyborate (YCOB) for joule-level and broadband non-collinear optical parametric chirped-pulse amplification centered at 800 nm. Based on a Ti:sapphire chirped-pulse amplification front end, an amplified signal energy of 3.36 J was generated with a pump of 35 J in the crystal. Compressed pulse duration of 44.3 fs, with a bandwidth of 49 nm, was achieved. The results confirm that YCOB crystal is another potential alternative as a final amplifier besides Ti:sapphire in a petawatt laser at 800 nm.  相似文献   

14.
A double-line terawatt beat laser (BEAT) is developed for exciting beat wave oscillations. BEAT consists of two oscillators and an amplification system including optical parametric chirped-pulse amplification (OPCPA) in which two individual pulses with wavelength separations of 10–35 nm are amplified, recompressed, and focused as a single beam. The recompressed pulse trace shows that a 150-fs pulse duration full width at half maximum was modulated at a beating period of 72 fs. This beating period matches a resonant excitation of plasma wave with an electron density of 2.5 × 1018 cm?3, resulting in excitation of a beat wave in hydrogen plasma with wave amplitude of 15 GV/m. The multiple beating oscillations can amplify the plasma wave and improve its structure. This scheme would be ideal for stabilizing the plasma wave strength in the plasma cavity and for realizing a practical laser plasma accelerator.  相似文献   

15.
Zhang X  Fan D  Zeng X  Wei X  Huang X  Wang X  Zhu Q  Qian L 《Optics letters》2006,31(5):646-648
We report a terawatt-Ti:sapphire-laser-pumped high-energy femtosecond optical parametric amplifier (OPA) with supercontinuum white-light injection. Signal pulses with a duration less than 100 fs and energy up to 4 mJ are obtained with large-aperture LiNbO3 crystals. This megajoule-class femtosecond OPA at 1053 nm presents a feasible alternative to optical parametric chirped-pulse amplification and is ready to be applied to petawatt lasers.  相似文献   

16.
Efimov A  Reitze DH 《Optics letters》1998,23(20):1612-1614
We have constructed a 26-fs chirped-pulse amplifier that incorporates a programmable liquid-crystal spatial light modulator in the pulse stretcher. The modulator serves a dual purpose. First, we apply frequency-dependent phase shifts to compensate for cubic, quartic, and nonlinear phase dispersion in the amplifier, which results in a reduction in pulse duration from 32 to 26 fs, in agreement with the transform limit of the amplified pulse spectrum. Second, we are able to produce high-fidelity compressed amplified shaped pulses by applying phase masks directly within the stretcher. Shaped pulse energies of greater than 1 mJ are routinely obtained.  相似文献   

17.
Angular dispersion of pump frequencies is shown to be an efficient mechanism for bandwidth enhancement in a noncollinear optical parametric amplifier. We demonstrate the generation of a continuous, simultaneously phase-matched 250-THz parametrically amplified spectrum. The resultant visible-near-IR signal-wave pulses were compressed to a 4-fs duration by a micromachined flexible mirror. Feedback for an iterative computer-controlled dispersion compensation algorithm is based on pulse characterization by second-harmonic generation frequency-resolved optical gating.  相似文献   

18.
We report on four-wave optical parametric amplification of the ultrashort ultraviolet light pulses in bulk fused silica and CaF2. Exact phase-matching in these isotropic media is achieved by means of non-collinear interaction with cylindrical beam focusing. Four-wave optical parametric amplifier efficiently operates in the UV spectral range with 1-ps laser pulses, delivering amplified signal energy exceeding 50 μJ using millijoule pump pulses in the visible (527 nm). Results of scanning of the parametric gain profile suggest that broad amplification bandwidth as wide as ∼20 nm (at FWHM) under these experimental settings is achieved, which might support amplification of sub-10-fs ultraviolet pulses with central wavelength around 330 nm. It is also shown experimentally and verified theoretically that the parametric gain profile exposes a distinct inhomogeneity and its bandwidth notably broadens due to effects of self- and cross-phase modulation imposed by the intense pump beam.  相似文献   

19.
Phase-stable parametric chirped-pulse amplification of ultrashort pulses from a carrier-envelope phase-stabilized mode-locked Ti:sapphire oscillator (11.0 fs) to 0.25 mJ/pulse at 1 kHz is demonstrated. Compression with a grating compressor and a LCD shaper yields near-Fourier-limited 11.8-fs pulses with an energy of 0.12 mJ. The amplifier is pumped by 532-nm pulses from a synchronized mode-locked laser, Nd:YAG amplifier system. This approach is shown to be promising for the next generation of ultrafast amplifiers aimed at producing terawatt-level phase-controlled few-cycle laser pulses.  相似文献   

20.
Fu Q  Seier F  Gayen SK  Alfano RR 《Optics letters》1997,22(10):712-714
We report on a femtosecond Ti:sapphire laser amplifier system that generates pulse energies >5 mJ at a 1-kHz repetition rate. The system consists of regenerative and multipass amplifiers and uses the technique of chirped-pulse amplification. When the system was seeded with 70-fs pulses at 800 nm from a self-mode-locked Ti:sapphire oscillator, amplified pulses of 94-fs duration at a repetition rate of 1 kHz and an average output power of 5.4 W were produced. The amplified pulse-repetition rate is variable from 250 Hz to 3 kHz. Pulse energies of >7.5 mJ were obtained at 500 and 250 Hz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号